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Engineers routinely design systems to be modular and symmetric
in order to increase robustness to perturbations and to facilitate
alterations at a later date. Biological structures also frequently
exhibit modularity and symmetry, but the origin of such trends
is much less well understood. It can be tempting to assume—by
analogy to engineering design—that symmetry and modularity
arise from natural selection. However, evolution, unlike engineers,
cannot plan ahead, and so these traits must also afford some
immediate selective advantage which is hard to reconcile with
the breadth of systems where symmetry is observed. Here we
introduce an alternative nonadaptive hypothesis based on an
algorithmic picture of evolution. It suggests that symmetric struc-
tures preferentially arise not just due to natural selection but
also because they require less specific information to encode and
are therefore much more likely to appear as phenotypic variation
through random mutations. Arguments from algorithmic infor-
mation theory can formalize this intuition, leading to the pre-
diction that many genotype–phenotype maps are exponentially
biased toward phenotypes with low descriptional complexity. A
preference for symmetry is a special case of this bias toward com-
pressible descriptions. We test these predictions with extensive
biological data, showing that protein complexes, RNA secondary
structures, and a model gene regulatory network all exhibit the
expected exponential bias toward simpler (and more symmetric)
phenotypes. Lower descriptional complexity also correlates with
higher mutational robustness, which may aid the evolution of
complex modular assemblies of multiple components.

evolution | development | algorithmic information theory

Evolution proceeds through genetic mutations which generate
the novel phenotypic variation upon which natural selection

can act. The relationship between the space of genotypes and
the space of phenotypes can be encapsulated as a genotype–
phenotype (GP) map (1–3). These can be viewed algorithmically,
where random genetic mutations search in the space of (devel-
opmental) algorithms encoded by the GP map, a relationship
that has been highlighted, for example, in plants (4), in Dawkins’
“biomorphs” (5), and in biomolecules (6).

Genetic mutations are random in the sense that they occur
independently of the phenotypic variation they produce. This
does not, however, mean that the probability P(p) that a GP map
produces a phenotype p upon random sampling of genotypes will
be anything like a uniformly random distribution. Instead, highly
general (but rather abstract) arguments based on the coding
theorem of algorithmic information theory (AIT) (7) predict
that the P(p) of many GP maps should be highly biased toward
phenotypes with low Kolmogorov complexity K (p) (8). High
symmetry can, in turn, be linked to low K (p) (6, 9–11). An
intuitive explanation for this algorithmic bias toward symmetry

proceeds in two steps: 1) Symmetric phenotypes typically need
less information to encode algorithmically, due to repetition
of subunits. This higher compressibility reduces constraints on
genotypes, implying that more genotypes will map to simpler,
more symmetric phenotypes than to more complex asymmetric
ones (2, 3). 2) Upon random mutations these symmetric pheno-
types are much more likely to arise as potential variation (12, 13),
so that a strong bias toward symmetry may emerge even without
natural selection for symmetry.

Symmetry in Protein Quaternary Structure and Polyominoes
We first explore evidence for this algorithmic hypothesis by
studying protein quaternary structure, which describes the
multimeric complexes into which many proteins self-assemble
in order to perform key cellular functions (Fig. 1A and
SI Appendix, Fig. S1 and section S1). These complexes can form
in the cell if proteins evolve attractive interfaces allowing them

Significance

Why does evolution favor symmetric structures when they
only represent a minute subset of all possible forms? Just as
monkeys randomly typing into a computer language will pref-
erentially produce outputs that can be generated by shorter
algorithms, so the coding theorem from algorithmic informa-
tion theory predicts that random mutations, when decoded
by the process of development, preferentially produce pheno-
types with shorter algorithmic descriptions. Since symmetric
structures need less information to encode, they are much
more likely to appear as potential variation. Combined with
an arrival-of-the-frequent mechanism, this algorithmic bias
predicts a much higher prevalence of low-complexity (high-
symmetry) phenotypes than follows from natural selection
alone and also explains patterns observed in protein com-
plexes, RNA secondary structures, and a gene regulatory net-
work.

Author contributions: I.G.J., K.D., J.P.K.D., S.E.A., and A.A.L. designed research; I.G.J.,
K.D., S.F.G., C.Q.C., J.P.K.D., S.E.A., and A.A.L. performed research; I.G.J., K.D., and A.A.L.
analyzed data; and I.G.J., K.D., S.E.A., and A.A.L. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1I.G.J. and K.D. contributed equally to this work.
2To whom correspondence may be addressed. Email: ard.louis@physics.ox.ac.uk.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2113883119/-/DCSupplemental.

Published March 11, 2022.

PNAS 2022 Vol. 119 No. 11 e2113883119 https://doi.org/10.1073/pnas.2113883119 1 of 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 5
1.

19
.1

4.
11

 o
n 

M
ar

ch
 1

3,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

51
.1

9.
14

.1
1.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2113883119&domain=pdf&date_stamp=2022-03-11
http://orcid.org/0000-0001-8559-3519
http://orcid.org/0000-0003-4452-2006
http://orcid.org/0000-0002-2947-765X
http://orcid.org/0000-0002-2226-9524
http://orcid.org/0000-0003-2613-0041
http://orcid.org/0000-0002-8438-910X
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113883119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113883119/-/DCSupplemental
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ard.louis@physics.ox.ac.uk
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113883119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113883119/-/DCSupplemental
https://doi.org/10.1073/pnas.2113883119


-6

-4

-2

0

D4 C4 D2 C2 D1 C1

lo
g(

fr
eq

ue
nc

y)

symmetry group

fraction of space
frequency in evolution

-4
-3
-2

-1
0

C6,D3 C3 C2 C1

lo
g(

fr
eq

ue
nc

y)

symmetry group

fraction of space
frequency in evolution

C F

A aA

A

A

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  2  4  6  8  10  12  14  16

lo
g(

fr
eq

ue
nc

y)

complexity K
~

 (number of interface types)

Protein complexes

C1
C2
C3

C6,D3

-5

-4

-3

-2

-1

 0

 0  5  10  15  20  25  30  35  40

lo
g(

fr
eq

ue
nc

y)

complexity K
~

 (number of interface types)

Polyominoes

C1
D1
C2
D2
C4
D4

0 35 4

c

A binds to a

building blocks assembled shape

low complexity, high symmetry 
structures are common:

high complexity, low symmetry 
structures are rare:

1778 protein complexes of size 6 50000 evolutionary runs with target size 16 

2

co

12 14

ce types)

low complexity, high symmetry 
structures are common:

high complexity, low symmetry 
structures are rare:

subunits protein complex

D

E

PolyominoesProtein complexesA

B

 polyominoes appear 
in the top 50 most frequent.

The top three topologies account 
for 76.8% of all complexes of size 6. 

subunit types
asymmetric interface
symmetric interface

Fig. 1. (A) Protein complexes self-assemble from individual units. (B) Frequency of 6-mer protein complex topologies found in the PDB versus the number
of interface types, a measure of complexity K̃(p). Symmetry groups are in standard Schoenflies notation: C6, D3, C3, C2, and C1. There is a strong preference
for low-complexity/high-symmetry structures. (C) Histograms of scaled frequencies of symmetries for 6-mer topologies found in the PDB (dark red) versus
the frequencies by symmetry of the morphospace of all possible 6-mers illustrate that symmetric structures are hugely overrepresented in the PDB database.
(D) Polyomino complexes self-assemble from individual units (here a binds to A) just as the proteins do. (E) Scaled frequency of polyominoes that fix in
evolutionary simulations with a fitness maximum at 16-mers, versus the number of interface types (a measure of complexity K̃(p)) exhibits a strong bias
toward high-symmetry structures, similar to protein complexes. (F) Histograms of the frequency of symmetry groups for all 16-mers (light) and for 16-mers
appearing in the evolutionary runs (dark) quantify how strongly biased variation drives a pronounced preference for high-symmetry structures.

to bind to each other (14–16). We analyzed a curated set of
34,287 protein complexes extracted from the Protein Data
Bank (PDB) that were categorized into 120 different bonding
topologies (16). In Fig. 1B, we plot, for all complexes involving
six subunits (6-mers), the frequency with which a protein complex

of topology p appears against the descriptional complexity
K̃ (p), an approximate measure of its true Kolmogorov assembly
complexity K (p), defined here as the minimal number of
distinct interfaces required to assemble the given structure
under general self-assembly rules (Materials and Methods). This
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definition of K̃ (p) can also be thought of as a measure of the
minimal number of evolutionary innovations needed to make
a self-assembling complex. The highest-probability structures
all have relatively low K̃ (p). Since structures with higher
symmetry need less information to describe (6, 9–11), the most
frequently observed complexes are also highly symmetric. Fig. 1C
and SI Appendix, Figs. S2A and S3A further demonstrate that
structures found in the PDB are significantly more symmetric
than the set of all possible 6-mers (Materials and Methods).
Similar biases toward high-symmetry structures obtain for other
sizes (SI Appendix, Fig. S2B).

In order to understand the evolutionary origins of this bias
toward symmetry we turn to a tractable GP map for protein qua-
ternary structure. In the Polyomino GP map, two-dimensional
tiles self-assemble into polyomino structures (17) that model
protein complex topologies (18) (Fig. 1D). The sides represent
the interfaces that bind proteins together. Within the Polyomino
GP map, the genomes are bit strings used to describe a set of tiles
and their interactions. The phenotypes are polyomino shapes p
that emerge from the self-assembly process. Although this model
is highly simplified, it has successfully explained evolutionary
trends in protein quaternary structure such as the preference of
dihedral over cyclic symmetry in homomeric tetramers (15, 17)
or the propensity of proteins to form larger aggregates such as
hemoglobin aggregation in sickle cell anemia (18).

To explore the strong preference for simple structures, we
performed evolutionary simulations where fitness is maximized
for polyominoes made of 16 blocks (Materials and Methods).
With 16 tile types and 64 interface types, the GP map denoted
as S16,64 allows all 13,079,255 possible 16-mer polyomino topolo-
gies (SI Appendix, Table 1) to be made. Fig. 1E demonstrates that
evolutionary outcomes are exponentially biased toward 16-mer
structures with low K̃ (p) (using the same complexity measure
as for the proteins [Materials and Methods]), even though every
16-mer has the same fitness.

The extraordinary strength of the bias toward high symmetry
can be further illustrated by examining the prevalence of the
two highest-symmetry groups in the outcomes of evolutionary
simulations. For 16-mers, there are 5 possible structures in
class D4 (all symmetries of the square) and 12 in C4 (fourfold
rotational symmetry). Even though these 17 structures represent
just over a millionth of all 16-mer phenotypes, they make
up about 30% of the structures that fix in the evolutionary
runs, demonstrating an extremely strong preference for high
symmetry (see also SI Appendix, Fig. S3B). Comparing the
histograms in Fig. 1 C and F shows that the polyominoes exhibit
a qualitatively similar bias toward high symmetry as seen for
the proteins. We checked that this strong bias toward high
symmetry/low K̃ (p) holds for a range of other evolutionary
parameters (such as mutation rate) and for other polyomino
sizes (SI Appendix, Fig. S6 and section S3C). Natural selection
explains why 16-mers are selected for (as opposed to other sizes).
However, since every 16-mer is equally fit, natural selection does
not explain the remarkable preference for symmetry observed
here, which is instead caused by bias in the arrival of variation.

Evolutionary Simulations Compared to Sampling
In order to further understand the mechanisms that are respon-
sible for the evolutionary preference for high symmetry, we cal-
culated the probability P(p) of obtaining phenotype (polyomino
shape) p by uniformly sampling 108 genomes for the S16,64 GP
map and counting each time a particular structure p (which can
be any size) appears. Fig. 2 shows that P(p) (or equivalently the
frequency) varies over many orders of magnitude for different
p. High P(p) only occurs for low K̃ (p) structures, while high
K̃ (p) structures have low P(p). Fig. 2, Inset, shows that the
frequency from an evolutionary run from Fig. 1 closely follows
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Fig. 2. Frequency with which a particular protein quaternary structure
topology p (black circles) appears in the PDB versus complexity K̃(p) =
number of interface types closely resembles the frequency/P(p) vs. K̃(p)
distribution of all possible polyomino structures, obtained by randomly
sampling 108 genotypes for the S16,64 space (green circles). Simpler (more
compressible) phenotypes are much more likely to occur. An illustrative
AIT upper bound from Eq. 1 is shown with a = 0.75, b = 0 (dashed red
line). (Inset) The frequency with which particular 16-mers are found to fix
in evolutionary runs from Fig. 1E is predicted by the probability P(p) (or
equivalently the frequency) with which they arise on random sampling of
genotypes; the solid line denotes x = y.

the P(p) for 16-mers from random sampling. We tested this
correlation for a range of different evolutionary parameters,
and also for both randomly assigned and fixed fitness functions,
and always observe relationships between frequency and K̃ (p)
that are strikingly similar to those found for random sampling
(SI Appendix, Fig. S6).

The observed similarity in all these different evolutionary
regimes is predicted by the arrival of the frequent population
dynamics framework of ref. 12 (SI Appendix, section S2). For
highly biased GP maps, it predicts that for a wide range of
mutation rates and population sizes, the rate at which variation
(phenotype p) arises in an evolving population is, to first order,
directly proportional to the probability P(p) of it appearing
upon uniform random sampling over genotypes. Strong bias in
the arrival of variation can overcome fitness differences and
so shape evolutionary outcomes (12, 19). Interestingly, recent
results for related systems, including the training of deep learning
algorithms, support this evolutionary dynamics picture. Deep
neural nets show a strong Occam’s razor–like bias toward simple
outputs (20) upon random sampling of parameters, and these
frequent (and simple) outputs appear with similar probability
under training with stochastic gradient descent (21). This simi-
larity between random sampling and the outcome of a stochastic
optimizer strengthens the case for extending the applicability of
the arrival of the frequent framework for highly biased to maps
to a wide range of fitness landscapes (see SI Appendix, section S2
for fuller discussion).

Fig. 2 also illustrates a striking similarity between the
probability/complexity scaling for polyominoes and that of
protein complex structures. Note that finite sampling effects
lead to a widening of the lowest-frequency outputs (8) (see
also SI Appendix, Fig. S5), suggesting that as more structures
are deposited in the 3DComplex database (14), the agreement
with the polyomino distribution may improve further. Given
the simplicity of the polyomino model, the tightness of this
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quantitative agreement is probably due in part to chance.
Nevertheless, the arrival of the frequent mechanism, which
for polyominoes explains the remarkably close similarity of the
frequency vs. K̃ (p) relationships across different evolutionary
scenarios (see, e.g., SI Appendix, Fig. S4–S9), predicts that the
probability–complexity relationships for the protein complexes
will be robust, on average, to the many different evolutionary
histories that generated these complexes. Taken together, the
data and arguments above strongly favor our hypothesis that
bias in the arrival of variation, and not some as yet undiscovered
adaptive process, is the first-order explanation of the prevalence
of high symmetry in protein complexes.

AIT and GP Maps
These results beg another question: is the bias toward simplicity
(low K̃ (p)) observed for protein clusters and polyominoes a
more general property of GP maps? Some intuition can be
gleaned from the famous trope of monkeys typing at random
on typewriters. If each typewriter has M keys, then every output
of length N has equal probability 1/MN . By contrast, if the
monkeys’ keyboard outputs are interpreted as a programming
language, then, for example, accidentally hitting the 21 characters
of the program “print “01” 500 times;” will generate the N =
1,000 -digit string 010101 . . . with probability 1/M 21 instead
of 1/M 1,000. In other words, when searching in the space of
algorithms, outputs that can be generated by short programs are
exponentially more likely to be produced than outputs that can
only be generated by long programs.

This intuition that simpler outputs are more likely to appear
upon random inputs into a computer programming language
can be precisely quantified in the field of AIT (7), where the
Kolmogorov complexityK (p) of a string p is formally defined as a
shortest program that generates p on a suitably chosen universal
Turing machine (UTM). While GP maps are typically not UTMs,
and strictly speaking, Kolmogorov complexity is uncomputable,
a relationship between the probability P(p) and a computable
descriptional complexity K̃ (p) (typically based on compression)
which approximates the true K (p) has recently been derived
(8) for (non-UTM) input–output maps f : I →O between NI

inputs and NO outputs. For a fairly general set of conditions,
including that NI � NO and that the maps are asymptotically
simple (SI Appendix, section S5), the probability P(p) that a map
f generates output p upon random inputs can be bounded as

P(p)≤ 2−aK̃(p)−b , [1]

where K̃ (p) is an appropriate approximation to the true
Kolmogorov complexity K (p), and a and b are constants that
depend on the map but not on p. While Eq. 1 is only an upper
bound, it can be shown (22) that outputs generated by uniform
random sampling of inputs are likely to be close to the bound. In
extensive tests, Eq. 1 provided accurate bounds on the P(p) for
systems ranging from coupled differential equations to the RNA
secondary structure (SS) GP map (8) to deep neural networks
(20), suggesting widespread applicability.

Since the number of genotypes is typically much greater than
the number of phenotypes (1–3), and their relationship is en-
coded in a set of biophysical rules that typically depend weakly
on system size, many GP maps satisfy the conditions (8) for
Eq. 1 to apply (see also SI Appendix, section S5). In Fig. 2, we
show an example of how Eq. 1 can act as an upper bound
to P(p) for the polyominoes and the protein complexes. In
SI Appendix, section S5C, we demonstrate that this AIT formal-
ism also works well for other choices of the complexity K̃ (p),
so that our results do not depend on the particular choices we
make here. The AIT formalism also suggests that related systems
should have similar probability–complexity relationships, which

helps explain why the polyominoes and proteins have similar
P(p) vs. K̃ (p) plots.

Since many GP maps satisfy the conditions for simplicity bias,
including those where symmetry may be harder to define, we
therefore hypothesized that a bias toward simplicity may also
strongly affect evolutionary outcomes for many other GP maps.
We tested this hypothesis for two other biological examples:
RNA secondary structure and a model gene regulatory network
(GRN).

Simplicity Bias in RNA Secondary Structure
Because it can fold into well-defined structures, RNA is a versa-
tile molecule that performs many biologically functional roles be-
sides encoding information. While predicting three-dimensional
structure from sequence is hard, a simpler problem of predicting
SS, which describes the bonding pattern of the bases, can be
both accurately and efficiently calculated (23). The map from
sequences to SS is perhaps the best-studied GP map and has
provided many conceptual insights into the role of structured
variation in evolution (1–3, 12, 24–26). It has already been shown
(see, e.g., refs. 25–27) that the highly biased RNA GP map
strongly determines the distributions of RNA shape properties
in the functional RNA database (fRNAdb) (28) of naturally
occurring noncoding RNA (ncRNA). Although natural selection
still plays a role (see refs. 25, 26 for further discussions), the
dominant determinant of these structural properties is strong
bias in the arrival of variation (12). It was recently shown (8)
that the RNA SS GP map is well described by Eq. 1. Combining
these observations leads to the hypothesis that functional ncRNA
in nature should also be exponentially biased toward more com-
pressible low K̃ (p) structures.

To test this hypothesis, we first, for RNA sequences of length
L= 30, calculate K̃ (p) with a standard Lempel–Ziv compression
technique (8) to directly measure the descriptional complexity
of the dot-bracket notation of an SS (Materials and Methods
and SI Appendix, section S4). Fig. 3A shows that there is a
strong inverse correlation between frequency and complexity
for both naturally occurring and randomly sampled phenotypes
[note that L= 30 is quite short so that finite size effects are
expected (8) to affect the correlation with Eq. 1]. For longer
RNA, the agreement with Eq. 1 is better (see, e.g., ref. 8 and
SI Appendix, Figs. S10 and S11). For L= 30, there are about
3× 106 possible SS (25), but only 17,603 are found in the
fRNAdb database (28), and these are much more likely to be
more compressible low K̃ (p) structures. Fig. 3C shows that
randomly sampling sequences provides a good predictor for the
frequency with which these structures are found in the database,
consistent with previous observations (25, 26) and the arrival of
the frequent framework (12).

For lengths longer than L= 30, the databases of natural RNAs
show little to no repeated SS, so individual frequencies cannot
be extracted. To make progress, we apply a well-established
coarse-graining strategy that recursively groups together RNA
structures by basic properties of their shapes (29), which was
applied to naturally occurring RNA SS in ref. 26. At the
highest level of coarse-graining (level 5), there are many repeat
structures in the fRNAdb database, allowing for frequencies
to be directly measured (Materials and Methods). For L= 100
we compare the empirical frequencies to P(p) estimated by
random sampling. Fig. 3B shows that there is again a strong
negative correlation between frequency and complexity (see also
SI Appendix, Tables II and III and Figs. S10 and S11). Fig. 3D
shows that natural frequencies are well predicted by random
sampling, as seen in ref. 26 for other lengths. Again, only a
tiny fraction (≈ 1/108) of all possible phenotypes is explored
by nature (26). The RNA SS GP map exhibits simplicity bias
phenomenology similar to the protein complexes and the
polyomino GP map. While the simpler group theory–based
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Fig. 3. Scaled frequency (occurrence probability) versus complexity K̃(p) for (A) L = 30 RNA full SS and (B) L = 100 SS coarse-grained to level 5 (Materials
and Methods). Probabilities for structures taken from random sampling of sequences (light red) compare well to the frequency found in the fRNA database
(28) (green dots) for 40,554 functional L = 30 RNA sequences with 17,603 unique dot-bracket SS and for 932 natural L = 100 RNA sequences mapping to 16
unique coarse-grained level 5 structures. The dashed lines show a possible upper bound from Eq. 1. Examples of high-probability/low-complexity and low-
probability/high-complexity SS are also shown. We directly compare the frequency of RNA structures in the fRNAdb database to the frequency of structures
upon uniform random sampling of genotypes for (C) L = 30 SS and (D) L = 100 coarse-grained structures. The lines are y = x. Correlation coefficients are
0.71 and 0.92, for L = 30 and L = 100, respectively, with P < 10−6 for both. Sampling errors are larger at low frequencies.

symmetries discussed for protein complexes and polyominoes
do not apply here, the bias toward lower K̃ (p) reflects the more
generalized symmetries in the RNA SS structures.

Model Gene Regulatory Network
The protein and RNA phenotypes both describe shapes. Can
a similar strong preference for simplicity be found for other
classes of phenotypes? To answer this question, we also studied
a celebrated model for the budding yeast cell cycle (30), where
the interactions between the biomolecules that regulate the cell
cycle are modeled by 60 coupled ordinary differential equations
(ODEs). As a proxy for the genotypes, we randomly sample
the 156 biochemical parameters of the ODEs (Materials and
Methods). For each set of parameters, we calculate the com-
plexity of the concentration versus time curve of the CLB2/SIC1
complex (a key part of the cycle) using the up–down method
(31). Fig. 4 shows that P(p) exhibits an exponential bias toward
low-complexity time curves, as hypothesized. Of course, many of
these phenotypes may not supply the biological function needed
for the budding yeast cell cycle. However, interestingly, the wild-
type phenotype has the lowest complexity of all the phenotypes
we found and is also the most likely to arise by random mutations.
While the evolutionary origins of this GRN are complex, we again
suggest that a bias toward simplicity in the arrival of variation
played a key role in its emergence.

Discussion
Our two main hypotheses are 1) upon random mutations, many
GP maps are exponentially biased toward phenotypic variation
with low descriptional complexity, as predicted by AIT (8), and
2) such strong bias in the arrival of variation can affect adaptive

evolutionary dynamics, leading to a much higher prevalence
of low-complexity (high-symmetry) phenotypes than can be ex-
plained by natural selection alone.
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Fig. 4. Scaled frequency vs. complexity K̃(p) for the budding yeast ODE cell
cycle model (30). Phenotypes are grouped by complexity of the time output
of the key CLB2/SIC1 complex concentration. Higher frequency means a
larger fraction of parameters generate this time curve. The red circle denotes
the wild-type phenotype, which is one of the simplest and most likely
phenotypes to appear. The dashed line shows a possible upper bound from
Eq. 1. There is a clear bias toward low-complexity outputs.
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The arguments above are general enough to suggest that many
biological systems, beyond the examples we provided, may favor
simplicity and, where relevant, high symmetry, without requir-
ing selective advantages for these features. For example, there
are claims that model hydrophobic-polar (HP) lattice proteins
with larger P(p) are typically more symmetric (32), and similar
patterns have been suggested for protein tertiary structure in
the PDB (33). In SI Appendix, section S6, we present further
evidence that protein tertiary structure, signaling networks (34),
and Boolean threshold models for GRNs (35) also exhibit bias in
the arrival of variation. At a more macroscopic level, a model
of tooth development (36) suggests that simpler phenotypes
evolved earlier, consistent with a high encounter probability in
evolutionary search. Similarly, for both teeth (37) and leaf shape
(38), mutations to simpler tooth phenotypes are more likely than
mutations to more complex phenotypes, an effect our theory
also predicts. A recent theoretical study (39) of the development
of morphology also found that simple morphologies were more
likely to appear than complex ones upon random parameter
choices. The L systems used to model plant development (4)
show simplicity bias (8), and Azevedo et al. (40) showed that
developmental pathways for cell lineages are significantly simpler
(in a Kolmogorov complexity sense) than would be expected by
chance.

Another interesting direction to investigate concerns the inter-
play of simplicity bias and logical depth (41), which measures the
time it takes for a UTM to calculate the output from the shortest
input strings. In this context, more complex GP maps are likely to
have more logical depth, and the open question is how the effects
we predict change for such systems.

At the other end of the spectrum, for complex phenotypic
traits affected by many loci, variation may be more isotropic
so that bias is weak. For such traits, where classical population
genetics—which focuses on shifting allele frequencies in a gene
pool where standing variation is abundant—typically works well,
our arguments may no longer hold. The phenotype bias we
discuss here is fundamentally about the origin of novel variation
(19, 42) and so is most relevant on longer time scales.

Finally, simple phenotypes have a larger P(p) and are
therefore more mutationally robust (1–3, 25, 43) (see also
SI Appendix, section S4B). A correlation between low complexity
and robustness is also found in the engineering literature (43,
44). Biological complexity often arises from connecting existing
components together into modular wholes. If the individual
components are more robust, then it is easier for them to evolve
additional function, for example, a patch to bind to another
protein, without compromising their core function. Similarly, a
larger robustness may also enhance the ability of a system to
encode cryptic variation, facilitating access to new phenotypes
(45). Paradoxically, a natural tendency toward simpler and more
robust structures may therefore facilitate the emergence of
modularity, where individual components can evolve indepen-
dently (46), and so make complex living systems more globally
evolvable.

Materials and Methods
Protein Complex Topologies. Our analysis of protein quaternary structure
builds upon the techniques and data presented in ref. 16, where a curated
set of 30,469 monomers, 28,860 homomers, and 5,527 heteromers were
extracted from the PDB and classified into 120 distinct topologies. These
were then used to make a periodic table of possible topologies. Protein
complexes are described in terms of a weighted subunit interaction graph.
An illustration of the topologies and how they are generated is shown in
SI Appendix, Fig. S1, for two heteromeric complexes and their final graph
topologies. Further examples of topologies and the PDB structures they
describe can be found at http://www.periodicproteincomplexes.org/. The
nodes of the graph are labeled according to their protein identities, and the
weights of the connections are the interface sizes in Å2. The procedure for

enumerating possible topologies and for classifying existing and potential
topologies is described more fully in ref. 16. This approach only considers
the largest interfaces, which if cut would disconnect the complex. The
reason is that small interfaces that can be cut without disconnecting the
complex are likely to be circumstantial and unlikely to play an important
role in the assembly and evolution of the complex. After constructing
the weighted subunit interaction graphs in this manner, we identify the
topologically distinct interaction graph of subunit types (see, for example,
SI Appendix, Fig. S1C, with the additional distinction between symmetric
and asymmetric self-interactions of a subunit type, corresponding to homo-
meric interfaces.

We take the number of interface types of protein complex p to be
the complexity measure K̃(p). This choice scales with the number of in-
dividual mutations needed to generate the self-assembled complex. See
SI Appendix, section S5C, for a longer discussion of different possible com-
plexity measures. Unlike the polyomino case, where the building block is
a square tile, the geometry of an individual protein is highly variable. For
example, a cyclic homomeric 6-ring and a cyclic homomeric 10-ring will
have the same topologically distinct interface configuration (which is just
the two parts of the same asymmetric interface on a single subunit). This
will be distinct from a heteromeric 6-ring in which we have two halves of
two different symmetric interfaces on a subunit, and also distinct from a
simple heterodimer. All three of these, however, have the same number
of interface types (2) and so appear at K̃(p) = 2 in the distribution of
Figs. 1 and 2. The single point that appears at K̃(p) = 1 for Fig. 2 is a
homodimer, and the single point at K̃(p) = 0 is a monomer. The sym-
metries of all protein complexes presented here are taken directly from
the PDB.

To calculate the symmetries of all hypothetical protein complexes of
size six in Fig. 1C, we used the following procedure. We first consider all
topologically distinct graphs of size six with up to six different subunit
types and symmetric or asymmetric homomeric interfaces between sub-
units of the same type. By comparing all 6! possible permutations of the
adjacency matrix and the associated node labels we then calculate the
permutation symmetries of the node types on these graphs as a proxy
for the spatial symmetry of the hypothetical protein complexes that they
represent. This collapses D3 and C6 into one category but allows us to
distinguish this category from C3, C2, and C1 (and these from each other).
Further discussion of the protein complexes can be found in SI Appendix,
section S1.

Polyominoes. The polyomino model was implemented as described in refs.
6, 17, 18. The genome encodes a rule set consisting of 4n numbers which
describe the interactions on each edge of n square tiles. Each number is
represented as a length b binary string, so that the whole genome is a binary
string of length L = 4nb. The interactions bond irreversibly and with equal
strength in unique pairs (1 ↔ 2, 3 ↔ 4, . . .), with types 0 and 2b − 1 being
neutral, not bonding to any other types. We label a given polyomino GP
map with up to n possible tiles and 4n possible colors as Sn,4n; in this paper
we usually work with S16,64.

The assembly process is initiated by placing a single copy of the first-
encoded subunit tile on an infinite grid. A different protocol where any
tile may be used to seed the assembly is also possible and does not signifi-
cantly affect the results presented here. Assembly then proceeds as follows.
1) Available moves are identified, consisting of an empty grid site, a par-
ticular tile, and a particular orientation, such that placing that tile in
that orientation in the site will form a bond to an adjacent tile that has
already been placed. 2) If there are no available moves, terminate assembly.
3) Choose a random available move, and place the given tile in that
orientation at that site. 4) If the current structure has exceeded a given cutoff
size, terminate assembly. 5) Go to step 1.

This process is repeated 20 times to ensure that assembly is deterministic—
that is, that the same structure is produced each time. If different structures
are produced or the structure exceeds a cutoff size (here taken to be larger
than a 16 × 16 grid), the structure is placed in the category UND (unbounded
or nondeterministic). For the calculation of probabilities/frequencies P(p)
we ignore genotypes that produce the UND phenotype. This choice mimics
the intuition that unbounded protein assemblies, or else proteins that
do not robustly self-assemble into the same shape, are usually highly
deleterious.

The rule set S16,64 allows any 16-mer to be made since it is always
possible to use addressable assembly where each tile is unique to a specific
location. However, many 16-mers can be made with significantly fewer than
16 tile types, although there are examples that (to our knowledge) can
only be made with all 16 tiles, so that a space allowing up to 16 tiles is
needed.
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To assign complexity values for the polyominoes, a measure similar to
that used for the proteins was applied. First, the minimal complexity over
the different genomes that generate polyomino p is estimated by sampling
and finding the shortest rule set after removing redundant information.
The search for a minimal complexity genome will be more accurate for
high-probability polyominoes than for low-probability polyominoes. We
checked that for most structures, only a fairly limited amount of sampling
provided an accurate estimate of the minimal complexity; the minimal
complexity genome is often the most likely to be found. The effects of
finite sampling are illustrated further in SI Appendix, section S3 and Fig. S5.
The complexity K̃(p) of polyomino p is then given by the number of
interfaces in the minimal genomes—thus, the number of genome regions
encoding interfaces that play an active role in forming the final structure.
A longer discussion of different choices of complexity measure, showing
that the qualitative behavior is not very sensitive to details in the choice
of approximate measure of algorithmic (Kolmogorov) information, can be
found in SI Appendix, section S3C.

Evolutionary simulations of polyomino structures are performed follow-
ing methods described in ref. 17: A population of N binary polyomino
genomes is maintained at each time step. The assembly process is performed
for each genome, and the resulting structure is recorded. UND genomes
are assigned zero fitness. Other structures are assigned a fitness value
based on the applied fitness function. These fitness values are used to
perform roulette wheel selection, whereby a genome gi with fitness f(gi)

is selected with probability f(gi)/
∑

j f(gj). Selection is performed N times
(with replacement) to build the population for the next time step. Selected
genomes are cloned to the next generation, then point mutations are
applied with probability μ at each locus. A point mutation changes a 0 to a
1 and vice versa in the genome. We do not employ cross-over or elitism in
these simulations.

We employ several different fitness functions. In the unit fitness protocol,
all polyomino structures that are not UND are assigned fitness 1. In the
random fitness protocol, each polyomino structure is assigned a fitness value
uniformly randomly distributed on [0, 1], and these values are reassigned for
each individual evolutionary run. In the size fitness protocol, a polyomino of
size s has fitness 1/(|s − s∗| + 1), so that polyominoes of size s∗ have unit
fitness and other sizes have fitness decreasing with distance from s∗. The
simulations for Fig. 1E were done with N = 100 and μ = 0.1 per genome,
per generation. A number of other evolutionary parameters are compared
in SI Appendix, section 3C and Fig. S6, showing that our main result—that
the outcome of evolutionary dynamics exhibit an exponential bias toward
simple structures—is not very sensitive to details such as mutation rate or
the choice of fitness function.

RNA Secondary Structure GP Map. For L = 30 RNA, we randomly gener-
ated 32,000 sequences, and for L = 100, we generated 100,000 random
sequences. As in refs. 25, 26, secondary structure (SS) is computationally pre-
dicted using the fold routine of the Vienna package (23) based on standard
thermodynamics of folding. All folding was performed with parameters set
to their default values (in particular, the temperature is set at T = 37◦ C).
We then calculated the neutral set size [NSS(p)], the number of sequences
mapping to a SS p, for each SS found by random sampling, by using the
neutral set size estimator described in ref. 27, which is known to be quite
accurate for larger NSS structures (25). We used default settings except for
the total number of measurements (set with the -m option), which we set to
1 instead of the default 10, for the sake of speed, but this does not noticeably
affect the outcomes we present here.

RNA structures can be represented in standard dot-bracket notation,
where brackets denote bonds and dots denote unbonded pairs. For example,
. . . ((. . .)) . . . . means that the first three bases are not bonded, the fourth
and fifth are bonded, the sixth through ninth are unbonded, the tenth base
is bonded to the fifth base, the eleventh base is bonded to the fourth base,
and the final four bases are unbonded. For shorter strands such as L = 30,
the same SS can be found multiple times in the fRNAdb.

For longer strands, finding multiple examples of the same SS becomes
more rare, so that SS frequencies cannot be easily directly extracted from
the fRNAdb. However, it seems reasonable, especially for larger structures,
that fine details of the structures are not as important as certain more
gross structural features that are captured by a more coarse-grained pic-
ture of the structure. In this spirit, we make use of the well-known RNA
abstract shape method (29) where the dot-bracket SS are abstracted to
one of five hierarchical levels, of increasing abstraction, by ignoring details
such as the length of loops but including broad shape features. For the
L = 100 data we choose the fifth or highest level of abstraction which
only measures the stem arrangement. This choice of level is needed to
achieve multiple examples of the same structure in the fRNAdb database,

so that a frequency can be directly determined with statistical signifi-
cance. The SS were converted to abstract shapes with the online tool
available at https://bibiserv.cebitec.uni-bielefeld.de/rnashapes. Using these
coarse-grained structures means that the theoretical probability P(p) can
be directly calculated from random sampling of sequences, where NG is
the number of sequences, which for an RNA GP map for length L RNA is
given by NG = 4L. A similar calculation of the P(p) for RNA structures for
L from 40 to 126 at different levels of coarse-graining can be found in
ref. 26.

To generate the distributions of natural RNA we took all available se-
quences of L = 30 and L = 100 from the noncoding fRNAdb (28). As in ref. 25,
we removed a small fraction (∼1%) of the natural RNA sequences containing
nonstandard nucleotide letters, e.g., N or R, because the standard folding
packages cannot treat them. Similarly, a small fraction (∼2%) of sequences
were also discarded due to the neutral set size estimator failing to calculate
the NSS (this is only relevant for L = 30). We have further checked that re-
moving by hand any sequences that were assigned putative roles, or are clear
repeats, does not significantly affect the strong correlation between the
frequencies found in the fRNA database and those obtained upon random
sampling of genotypes. For a further discussion of the question of how well
frequency in the databases tracks the frequency in nature, see also refs. 25,
26 and SI Appendix, Fig. S10, where a comparison with the Rfam database is
also made. Note that the similar behavior we find across structure prediction
methods, strand lengths, and databases would be extremely odd if artificial
biases were strong on average in the fRNA database. We used 40,554 unique
RNA sequences of L = 30, taken from the fRNAdb, corresponding to 17,603
unique dot-bracket structures. Similarly, we used 932 unique fRNAdb L =

100 RNA sequences, corresponding to 17 unique level 5 abstract structures/
shapes.

To estimate the complexity of an RNA SS, we first converted the dot-
bracket representation of the structure into a binary string p and then
used the Lempel–Ziv-based complexity measure from ref. 8 to estimate
its complexity. To convert to binary strings, we replaced each dot with
the bits 00, each left bracket with the bits 10, and each right bracket
with 01. Thus, an RNA SS of length n becomes a bit string of length
2n. Because level 5 abstraction only contains left and right brackets, i.e.,
[and], we simply convert the left bracket to 0 and the right to 1 be-
fore estimating the complexity of the resulting bit string via the Lempel–
Ziv-based complexity measure from ref. 8. The level 5 abstract trivial shape
with no bonds is written as underscore, and this we simply represented
as a single 0 bit. SI Appendix, section S4 provides more background on
RNA structures, and SI Appendix, section S5B provides more detail of the
complexity measure.

GRN of Budding Yeast Cell Cycle. The budding yeast (Saccharomyces cere-
visiae) cell cycle GRN system from ref. 30 consists of 60 coupled ODEs relating
156 biochemical parameters. The model parameter space (i.e., genotype
space) was sampled by picking random values for each of the parameters
by multiplying the wild-type value by one of {0.25, 0.50, . . . , 1.75, 2.00},
chosen with uniform probability. The ODEs generate concentration–time
curves for different biochemicals involved in cell cycle regulations. All runs
were first simulated for 1,000 time steps, with every time step corresponding
to 1 min. Next, we identified the period of every run (usually on the order
of 90 time steps), took one full oscillation, and coarse-grained it to 50 time
steps. This way, if two genotypes produce curves which are identical up
to changes in period, they should ultimately produce identical or nearly
identical time series and binary string phenotypes. For every genotype or
set of parameters, the curves for the CLB2/SIC1 complex are then discretized
into binary strings using the up–down method (31): for every discrete value
of t = δt, 2δt, 3δt, . . . , we calculate the slope dy/dt of the concentration
curve, and if dy/dt ≥ 0, a 1 gets assigned to the jth bit of the output string;
otherwise, a 0 is assigned to it. All strings with the same up–down profile
were classified as one phenotype. To generate the P(p) in Fig. 4, 5 × 106

inputs were sampled. Complexity K̃(p) is assigned by using the Lempel–Ziv
measure from ref. 8 (see also SI Appendix, section S5B) applied to binary
output strings. As shown in ref. 8, this methodology works well for cou-
pled differential equations, and the choice of input discretization, sample
size, and initial conditions does not qualitatively affect the probability–
complexity relationships obtained. The wild-type curve can be observed in
in figure 2 of ref. 30, where it is labeled Clb2T .

Data Availability. All study data are included in the article and/or
SI Appendix.
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