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Modelling the rate at which adaptive phenotypes appear in a population is a key to predicting evolution-
ary processes. Given random mutations, should this rate be modelled by a simple Poisson process, or is a
more complex dynamics needed? Here we use analytic calculations and simulations of evolving populations on
explicit genotype-phenotype maps to show that the introduction of novel phenotypes can be ‘bursty or overdis-
persed. In other words, a novel phenotype either appears multiple times in quick succession, or not at all for
many generations. These bursts are fundamentally caused by statistical fluctuations and other structure in
the map from genotypes to phenotypes. Their strength depends on population parameters, being highest for
‘monomorphic populations with low mutation rates. They can also be enhanced by additional inhomogeneities
in the mapping from genotypes to phenotypes. We mainly investigate the effect of bursts using the well-studied
genotype-phenotype map for RNA secondary structure, but find similar behaviour in a lattice protein model and
in Richard Dawkins’s biomorphs model of morphological development. Bursts can profoundly affect adaptive
dynamics. Most notably, they imply that fitness differences play a smaller role in determining which phenotype
fixes than would be the case for a Poisson process without bursts.

Introduction

Darwinian evolution accomplishes change over time
through the joint processes of variation and selection.
There is a longstanding tradition that focuses on the
second step of the evolutionary process, using popula-
tion genetics calculations that describe how genetic drift
and natural selection affect the fixation dynamics in a
population that initially starts with multiple alleles with
different fitness, but where no new alleles appear [1]. It is
also possible to include the first step, the introduction of
novel phenotypic variation, within a population genetics
framework [2]. Since the fitness value of an allele is fun-
damentally caused by the interaction of the phenotype it
represents with the environment, one can think of alle-
les with different fitness as representing different pheno-
types. A common underlying assumption in this class of
models is that the introduction of new alleles can be char-
acterised by an average rate (see e.g. refs [3, 2]). While
these rates can differ, these models assume that indi-
vidual introductions are uncorrelated, leading to Poisson
statistics. We will call models that make such assump-
tions average-rate models.
A more sophisticated way to treat the introduction of

novel phenotypic variation is to consider a genotype-
phenotype (GP) map that explicitly models how random
mutations lead to new phenotypes [8], see e.g. [9, 10] for
recent reviews. Examples of well-studied GP maps in-
clude RNA secondary structures [11, 12, 13], simplified
models of protein structure, such as the hydrophobic-
polar (‘HP’) lattice model of tertiary structure [14] and
the tile-based ‘polyomino’ model of protein quaternary
structure [15], and gene regulatory networks [16, 17, 18].

These models describe different biological entities, but all
create a bridge between two levels. At the first level of
“genotypes”, information is genetically encoded, for ex-
ample in nucleic acid sequences or amino acid sequences,
and can be directly changed through mutations. The sec-
ond level of “phenotypes” describes higher-order charac-
teristics of biological or functional relevance whose evo-
lution we are interested in, for example, molecular struc-
tures or patterns of gene expression. The well-studied
examples listed above all focus on the molecular scale
due to the computational complexity of modelling larger-
scale phenotypes. However, the framework of GP maps
can be applied more broadly [19], for example to Richard
Dawkins’s biomorphs [20, 21], a simple model of devel-
opment.

Interestingly, despite the diversity of the biological en-
tities they represent, all these GP maps exhibit certain
commonalities [9, 10]. For example, as emphasised by
Kimura [22], many mutations can be neutral, implying
that a given phenotype can be generated by multiple dis-
tinct genotypes [11]. These then form the ‘neutral set’
of that phenotype. Neutral sets of genotypes are not
randomly distributed but are thought to display ‘neutral
correlations’ [23]. For example, two genotypes that differ
by a single mutation are much more likely to correspond
to the same phenotype and thus the same neutral set
than two randomly chosen genotypes. This implies that
a population can drift from genotype to genotype within
a neutral set [23, 24]. There is a small caveat, namely
that the whole neutral set may not be connected through
neutral mutations, due in part to biophysical constraints
(for example in RNA, one needs a double mutation to
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Figure 1: Structure in the mapping from genotypes to phenotypes can induce non-Poissonian bursts
in the introduction of novel variation. (A) Genotypes of sequence length L = 12nt mapping to three se-
lected RNA secondary structure phenotypes (shown in grey, red and blue) are drawn as a mutational network.
Each genotype is a network node and each grey edge between two genotypes means that these two genotypes are
only one point mutation apart. A full neutral component (NC) of 1094 genotypes (nodes) is shown for the grey
phenotype (specifically the NC containing the sequence AUACGAAACGUA), while only those nodes connected to the
grey NC are shown for the red and blue phenotypes. This network is heterogeneous in several ways: first, not all
grey genotypes are portal genotypes for red and blue, i.e. genotypes with mutational connections to red or blue
phenotypes. Secondly, the grey NC has a community structure where the nodes form several densely connected
clusters. Thirdly, the portal genotypes to the red or blue phenotype are concentrated on a few regions of the grey
network, i.e. transitions to blue or red are very likely from some grey genotypes and their mutational neighbours,
but impossible otherwise. (B) Idealised schematic of individuals in the population (y-axis) vs. time (x-axis). The
population starts on the grey phenotype and moves through the grey NC by neutral mutations. Other novel phe-
notypes can appear through random mutations, but in this simplified case of strong stabilizing selection, the novel
phenotypes only appear for one generation. Here only two novel phenotypes, blue and red, are depicted, with blue
appearing at a larger rate than red. Case 1 depicts the classical picture with Poisson statistics, whereas case 2
illustrates “bursty/overdispersed variation” due to the heterogeneous structure in the GP map. Both cases have
the same average rates of introduction. Note that each colour stands for one phenotype, but in this many-to-one
mapping, this does not imply that they have the same genotype. This and the fact that we focus on burstiness in
the newly introduced phenotypes, not in the times that phenotypes are fixed in the population, are differences from
the overdispersion of the molecular clock in neutral evolution [4, 5, 6, 7].

change a CG bond to a GC bond [25, 26]) so that the
neutral set consists of several disjoint parts, which are
referred to as neutral components (NCs) [26].

One important motivation for including the complex-
ity of a GP map is to study the dynamics of neutral
evolution on a NC [25, 5, 27, 13]. For example, dif-
ferent genotypes in a NC can have different robustness
(i.e. a different number of neutral mutations per geno-
type) [12]. These inhomogeneities in the robustness im-
ply that the supply of neutral mutations is genotype-
dependent and thus changes over evolutionary time,
which can lead to overdispersion in the rate of neutral
fixations [28, 5, 4, 29].

The effect of the GP map structure on neutral evolu-
tionary dynamics prompts the question of whether in-

homogeneities present in the GP map can also shape
the introduction of novel phenotypes. To illustrate this
point, Fig 1A shows a NC taken from the RNA secondary
structure GP map for a phenotype pg (grey) and the
point mutation links it makes to two other phenotypes,
pr (red) and pb (blue). Let us focus on the sequences or
genotypes with a particular novel phenotype pi in their
mutational neighbourhood, the portal genotype gpi

for
pi (similar to ref [30]). A population can only produce
pi as variation if such portal genotypes gpi

are present
in the population (except at very high mutation rates
when double mutations occur more frequently). Thus,
we expect to observe multiple appearances of a specific
phenotype pi when a portal is present in a population
(a burst), and no appearances of pi otherwise (see the

2

Page 2 of 20

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

Molecular Biology and Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae085/7661020 by guest on 05 M
ay 2024



schematic in Fig. 1B) [31]. This simple argument sug-
gests that non-Poissonian patterns in the appearance of
a new phenotype pi will occur whenever only some geno-
types on a NC are portals to pi.

There are additional types of inhomogeneities in NCs
that may further contribute to bursty pi introductions.
For example, genotypes in the NC of an initial pheno-
type pg typically form clusters (or communities from
a network science perspective) where genotypes in the
same cluster are more highly connected through muta-
tions [32, 33, 13]. This structure could trap evolving
populations in one part of a NC, and thus amplify other
inhomogeneities [34]. Finally, we see in Fig. 1A that por-
tal genotypes to a given pi are typically clustered within
a NC: the probability that a portal genotype has multi-
ple mutations to pi or that its close neighbours are also
portals is higher than in a random model [23, 35]. This
clustering of mutations to pi around specific parts of a
NC is referred to as non-neutral correlations [23]. Taken
together, the number of mutational connections to pi is
typically highly inhomogeneous over a NC, and this in-
homogeneity is expected to lead to ‘bursty’ appearances
of pi in populations evolving on that NC [31, 33, 35], for
which some evidence exists for specific NCs [35].

Overdispersion in molecular evolution has already been
discussed in other contexts, for example, Ohta &
Kimura’s [6] and Gillespie’s [7] famous work on the
overdispersion of the molecular clock in the 1970s and
1980s. However, the bursts we describe here refer to a
distinct, although not mutually exclusive phenomenon.
Here, we show how the appearance of a particular novel
phenotype can exhibit overdispersion (see Fig. 1B). These
appearances can originate from different substitutions
and thus different genotypes. For example, in Fig. 1A,
from a given grey node, several mutational connections
can lead to distinct nodes corresponding to the ‘blue’
phenotype. These bursts can affect the timing and prob-
ability of different fixation processes, but they cannot
lead to a burst in fixations since each novel phenotype
can only go into fixation once. Thus, there are two key
differences between the ‘bursts’ described in this paper
and observations of an overdispersed molecular clock: the
former can only be observed on the phenotypic level and
in the introduction of new variation, whereas the lat-
ter can be observed from sequence data and from the
timing of fixed mutations. More recent observations of
overdispersed phenomena in neutral and adaptive molec-
ular evolution typically also fall into this latter cate-
gory: overdispersion is observed in substitutions on the
sequence level that reach a certain frequency threshold
in the population (i.e., not counting introductions that
are immediately lost through drift). Examples include
‘bursts’ of substitutions in the influenza haemagglutinin
protein, which may be due to fluctuations in coalescent
tree structures without recombination [36], or due to
hitchhiking effects [37], which have also been invoked in
overdispersed mutations at lower frequencies in evolving
yeast populations [38].

A second association with the term ‘burst’ is with the
concept of ‘punctuated equilibrium’ [39]. The overdis-
persed variation analysed here could indeed lead to punc-
tuated patterns, but even an average-rate model is suffi-

cient for modelling long periods of stasis until a rare phe-
notypic transition pi appears and goes into fixation, see
for example [40]. In previous work showing punctuated
dynamics on GP maps [41, 42, 43], both of these factors
are likely to have played a role and were not distinguished
further. These examples include one influential model of
influenza evolution [42], which sought to explain a phe-
notypically bursty, but genotypically continuous pattern
of evolution, i.e. a similar phenomenon as in our analysis
here. Despite this connection, our bursts are predicted
to be more prominent in a mutation-limited regime, and
may thus not be relevant to rapidly-mutating influenza
viruses.

In this paper, we will explore the conditions for phe-
notypic ‘bursts’ to occur and their effects on evolution-
ary dynamics, using the RNA sequence-to-secondary-
structure GP map as a main example. This is a famous
and much-studied GP map model [10] because it is both
biologically relevant for non-coding RNAs and can be
efficiently modelled with computational techniques us-
ing, for example, the ViennaRNA package [44]. To check
our results beyond this particular GP map model, we
also examine bursts for two further GP maps: the HP
(‘hydrophobic-polar’) lattice model for protein tertiary
structure [45, 14], and the biomorphs model of develop-
ment [19].

We proceed as follows: First, we build on simple scaling
arguments from ref [31] to explore the time scales and
sizes of bursts, as well as their impact on adaptive dy-
namics for the simplest case of the fully monomorphic
regime. Next, using a mixture of analytic and compu-
tational methods, we separate out the effects of differ-
ent types of GP map inhomogeneities by constructing
a hierarchy of null models. The simplest two models
are the average-rate model and a random null model
from [31] that has sequences randomly linked to phe-
notypes. The more complex models add increasing levels
of non-random structure until the final level describes
the full GP map. All levels of complexity are studied
by population genetic simulations, and for the two sim-
plest levels, we can also derive analytic descriptions of
the statistics at which novel phenotypes appear through
mutations. We repeat the simulations for a range of pop-
ulation sizes and mutation rates and find that, as ex-
pected [31], the introduction of new phenotypes is most
strongly overdispersed for large population sizes and low
mutation rates. Next, we study how bursts affect adap-
tive evolution in a landscape where one of the non-neutral
variants has a selective advantage over the initial pheno-
type. We show that bursty dynamics can strongly in-
crease average fixation times compared to an average-
rate model. Moreover, the fixation rates saturate at a
modest fitness threshold and only weakly increase with
fitness above this threshold. The root cause of these ef-
fects is that, with bursts, the discovery of a portal geno-
type is the rate-limiting step in the adaptive dynamics.
Finally, we study the arrival of the frequent [31] (or “first
come, first served” [3]) scenario for a two-peaked fitness
landscape, where the fitter phenotype has a much lower
average rate of appearance. We show that the proba-
bility that the fitter, but less frequent, phenotype, fixes
first can be markedly suppressed compared to the pre-
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symbol name calculation ref

L sequence length free parameter
u mutation rate (per site & generation) free parameter

N population size free parameter1

si selective advantage of phenotype pi free parameter
K alphabet size set by the GP map (K = 4 for RNA)

NC neutral component

set by the GP map (defined as the set of geno-
types that map to a single phenotype and that
are mutually connected by phenotype-preserving
mutations)

[26]

φpip0
mutation probability from phenotype p0 to pi

set by the GP map (calculated as the probability
that a mutation on a genotype from the relevant
neutral component of p0 produces a phenotype
pi)

[31]

portal
geno-
type to
pi

a genotype that has pi in its mutational neigh-
bourhood

set by the GP map

Pgpi

probability that an arbitrary genotype is a por-
tal to p1

set by the GP map

ρ mutational robustness of a NC
set by the GP map (calculated as the fraction of
phenotype-preserving mutations out of all possi-
ble mutations on the NC)

[26]

ri
rate of pi introductions in the average-rate
model

ri = LNu× φpip0
[31]

tfix
i expected time for pi introduction and fixation

derived for the average-rate case in Eq. S9 and
for the random GP map in Eq. S15 (both SI)

tne
mean time between neutral fixations through
drift

tne = (uLρ)−1 [31]

tgene
time scale on which every single substitution in
a mutational neighbourhood occurs once

tgene = K−1
Nu

[31]

M
burst size in the simplest approx. of the random
map

M = tne

tgene
= N

(K−1)Lρ [31]

P fix
p1

single-mutant fixation probability P fix
p1

= 1−exp(−2s1)
1−exp(−2Ns1)

[48]

P fix
portal p1

probability of p1 fixation before the ‘portal’
genotype disappears through a neutral fixation

derived in Eq. S14 in the SI

Table 1: An overview of key quantities and their definitions
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dictions of average-rate models such as those used in
refs [3, 46, 47], and argue that these effects can extend
to more complex fitness landscapes.

Scaling arguments for bursts in the
monomorphic regime

In this section, we explore some simple scaling arguments
to provide intuition for how inhomogeneities in the dis-
tribution of portal genotypes, sequences with at least one
mutation to a desired phenotype, affect evolutionary dy-
namics.

We first ask whether the fraction of possible genotypes
that are portals for any given phenotype is small or large.
Consider a system with genotypes that are sequences of
length L with alphabet size K (see definitions in table 1).
The number of mutational neighbours of any sequence is
L(K − 1), which grows linearly with L. The total num-
ber of phenotypes often exceeds this value, and then only
a fraction of sequences can be portal genotypes to any
given phenotype p. For long sequences, this can be de-
duced from scaling arguments since the total number of
phenotypes typically scales exponentially with sequence
length L 2, and this quickly becomes much larger than
L(K − 1), the number of mutational neighbours. Then
the fraction of genotypes that are portals to a given phe-
notype p is typically small.

In this paper, we focus on the mutational introduction
of a novel phenotype pi in a population that is initialised
on a NC of a phenotype pg and evolves neutrally from
genotype to genotype in this NC due to genetic drift.
We start by building on earlier work by McCandlish [35]
and our group [31], where some of the arguments below
were, to our knowledge, first mentioned. Let us consider
the weak-mutation or monomorphic regime, where the
product of the point mutation rate u, sequence length L
and population size N is small (NuL < 1), i.e. only a
small number of new mutations occur in the population
in any given generation [2]. Thus, the population will be
localised on a single genotype g0 until the next neutral
fixation, with a time-scale of tne given by [31]:

tne ≈
1

Luρ
, (1)

where the robustness ρ is the mean probability that a
mutation is neutral on that NC.

While a population is localised on a particular geno-
type g0, it experiences mutations at rate NuL, which
are distributed among the (K − 1)L distinct (neutral
or non-neutral) mutational neighbours of that genotype.
Thus, each specific mutational neighbour is produced ev-
ery tgene generations with [31]:

tgene =
(K − 1)L

NuL
=
K − 1

Nu
(2)

By taking the ratio of tne and tgene, we can estimate, how
often any 1-mutational neighbour of g0 will be produced

while the population remains on a genotype g0 [31]:

M =
tne
tgene

=
N

(K − 1)ρL
≈ N

L
(3)

The final approximation follows because (K−1) is 3 (for
RNA) and 19 (for proteins) while ρ is typically not too
small [23] so that their product is roughly of order 1.
We will call M the burst size since it is the expected
number of times the same new genotype (and thus the
same new phenotype pi) is introduced while the popu-
lation is on a portal genotype. The true burst size will
be larger if there is more than one mutation to pi in the
1-mutational neighbourhood of g0, for example, due to
the inhomogeneities present in the RNA map. The time
scale between such bursts is set by the time scale for the
population to drift onto a new portal genotype, which is
long if only a small fraction of genotypes are portals to
pi. If the probability that a given genotype is a portal
genotype to pi is denoted as Pgpi

, then the time-scale
tport is:

tport ≈
tne
Pgpi

� tne. (4)

To summarise, in the monomorphic regime, if Pgpi
� 1

and N/L � 1, there will be long periods with no mu-
tations to pi until the population drifts onto a portal
genotype, with a time-scale tport. If this portal geno-
type has npi mutations to pi in its 1-mutational neigh-
bourhood, then (if pi does not fix) the population will
produce pi an average of npi

M times before the popu-
lation neutrally fixes to a new genotype on a time-scale
tne � tport. Such a “burst” is illustrated in the second
panel of Fig 1B. Since the appearance of the new pheno-
type pi depends on a rare event (the fixation of a portal
genotype), these appearances will be overdispersed, sim-
ilarly to the case of noise in gene expression, where a
small number of mRNA in a cell may produce a larger
number of proteins in bursts [51].
Perhaps the most interesting impact of bursts is on the

dynamics of adaptation. Consider a phenotype pi with
a single-mutant fixation probability P fix

pi
. Now, if a por-

tal genotype is found, on average a burst of M mutants
of phenotype pi will be produced. Then the probability
P fix

portal pi
that a fixation event occurs by the end of that

burst is well approximated by the following expression
(derivation in SI section S1.3.3):

P fix
portal pi

=

(
1 +

1

P fix
pi
M

)−1

. (5)

When P fix
pi
M � 1, this function saturates towards 1 (see

SI Fig S1), and its value is insensitive to changes in the
single-mutant fixation probability P fix

pi
, which depends

on the selective advantage. In other words, as long as
P fix
pi
M � 1, a typical burst produces more pi than are

strictly needed for fixation. Then, the time to fixation is
primarily set by the timing of the first burst rather than
by the strength of selection or the size of a burst. In the
case of large bursts with long inter-burst intervals, this
can greatly increase the time to fixation compared to an
average-rate model with the same mean rate of pi intro-
ductions. Since P fix

pi
∝ spi

as long as 1/N � spi
� 1,

2For RNA, the number of topologically possible structures scales as αL × L−3/2 with α ≈ 2.29 [49], and the number of designable
structures, i.e. structures that exist as phenotypes for at least one genotype, is also estimated to scale exponentially, as 0.13×1.76L [50].
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individuals in
 population

time (in generations)

individuals in
 population

time (in generations)

individuals in
 population

time (in generations)

Low selective advantage

No bursts

High selective advantage

W
ith bursts

individuals in
 population

time (in generations)

Figure 2: Idealised schematic - the effect of bursts on the time to fixation: in the non-bursty case (first
row), the red phenotype pr, which is fitter than the initial grey phenotype, appears at intervals that are described by
a Poisson process. The fixation time depends strongly on how many appearances of pr are required for its fixation,
which in turn depends strongly on its selection coefficient spr

. In the overdispersed case (second row), there are
time intervals where pr does not appear at all for many generations and intervals when the population resides at
a portal genotype, and pr is produced many times in quick succession. When pr does not appear at all, it cannot
fix, so its selective advantage does not matter. When it appears repeatedly, it is likely to fix as long as its fitness
is above a modest threshold given by Eq. 6, but how far above the threshold does not matter much. The time to
fixation in this regime is thus dominated by the time tport for the population to reach a portal genotype. The fitness
plays a much less important role.

where spi
is the selection coefficient for pi, the saturation

effect becomes relevant when

spi & 1/M (6)

In the simplest case, where portals have only one instance
of pi in their mutational neighbourhood, the threshold
scales as sp > L/N (see Eqns. 3 and 6). For a typi-
cal sequence of L ≤ 1000 bp and a small population of
N ∼ 105, this gives sp ∼ 0.01. This threshold is remark-
ably low! Moreover, the threshold can be even smaller
if portals have several pi connections due to non-neutral
correlations. For simplicity, we have so far worked with
an idealised monomorphic population that is always lo-
cated at one genotype at a time. A fuller treatment of
a more realistic monomorphic population is presented in
the SI (section S1.3) and the resulting predictions are
shown alongside our simulation data as cyan lines in
Figs 4, 6 & 7. But the basic phenomenology is captured
by the simple arguments above.
By contrast, in the polymorphic regime NLu � 1, the

population will carry a diverse set of genotypes at any
time, and so inhomogeneities in the distribution of por-
tal genotypes can be washed out [31, 23], resulting in
dynamics closer to an average-rate model. Nevertheless,
as can be seen in Fig. 1A, the inhomogeneities in por-
tal genotypes across a NC can cover a significant range

in Hamming distance. Therefore, the strong inhomo-
geneities may cause bursty behaviour further into poly-
morphic regime than what would be the case for NCs
where the only source of inhomogeneity is statistical fluc-
tuations due to a small fraction of portals. Even at ex-
tremely high mutation rates, the inhomogeneity of the
GP map can be important since high mutation rates typ-
ically entail a preference for high-robustness regions of a
neutral set, which might be enriched in portals for some
phenotypes over others [35].

Similarly, in what we will call the fast-drift limit N/L <
1, where the population is smaller than the genome size,
even monomorphic populations will produce new pheno-
types with statistics more in line with an average-rate
model [31]. The reason is that the population does not
produce all genotypes in its one-mutational neighbour-
hood before moving on to a new mutational neighbour-
hood through a neutral fixation (see Eqns. 1&2). Even
for a relatively small population of N & 105 individuals,
the fast-drift limit only becomes relevant if we consider
sections of the genome longer than & 105 bp, i.e. beyond
typical single genes. Again, structural inhomogeneities
on larger Hamming-distance scales may still cause bursts
in this fast-drift regime.

In the next section, we will use a combination of an-
alytic and computational approaches to study in detail
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how the scaling arguments above apply to a specific sys-
tem, namely the RNA GP map for sequences of length
L = 12 nucleotides.

Results for an RNA GP map

A hierarchy of simplified models

To investigate how different features of the RNA GP map
can lead to overdispersion in the arrival of novel pheno-
typic variation, we construct a hierarchy of simpler mod-
els that contain increasing amounts of the structure of
the full RNA data. These are depicted in Fig 3, and
discussed in more detail below.
At the first and simplest level, we use a model from

ref [31], the random GP map, which has discrete geno-
types, but no correlations. The topology and genetic
neutral and non-neutral correlations of the NC are com-
pletely erased by randomly assigning sequences of length
L = 12nt (the genotypes) to phenotypes (secondary
structures) subject to the constraints that the mean out-
comes of both neutral and non-neutral mutations equal
those of the grey NC in the RNA map. In this map, not
every genotype on the NC is a portal genotype, simply
due to statistical fluctuations.
At the second level, we define a topology GP map. Here,

the initial NC and its internal topology (all neutral muta-
tion connections) are identical to the full RNA map, but
the phenotypic changes generated through non-neutral
mutations are randomised (similar to a model found in
ref [35]). The mean probability of a specific phenotypic
change is set to match the corresponding NC in the RNA
map, but which non-neutral mutation gives which pheno-
typic change is completely randomised. Thus, this map
reproduces all neutral genetic correlations, but it will
have no non-neutral genetic correlations.
At the third level, we define a community GP map. As

for the topology GP map, the initial NC and its topology
are identical to the full RNA map. Unlike the topology
GP map, however, the randomisation of non-neutral mu-
tations is applied to each network community of the NC
separately. Thus, this map captures the fact that some
phenotypic changes might be more likely in certain net-
work communities of the RNA NC but misses out on
other kinds of non-neutral genetic correlations.
Finally, we investigate the full RNA map. In addition

to the features present in the community GP map, we
observe that non-neutral mutations to a specific pheno-
type are even more clustered to specific genotypes and
their neighbourhood.

Overdispersion in arrival rates on the
RNA GP map

We start with population dynamics simulations of the
case where all non-neutral variants are unviable (i.e. have
zero fitness). Although alternative phenotypes are intro-
duced through mutations, they then disappear within
one generation due to the strong stabilising selection.

With this simplification, the population will be confined
to the initial phenotype pg

3 and we can study the intro-
duction of new variation in isolation, without any ongo-
ing non-neutral fixation processes.

To measure the statistics of the introduction of new mu-
tations, we simulated a population of N = 1000 haploid
individuals with a mutation rate per site of u = 2×10−5

using Wright-Fisher dynamics (see Methods). Since
NLu ≈ 0.24, this system is in the monomorphic regime.
We record how many times one specific new phenotype,
pb, appears during each interval of ∆t = 3000, which
is much shorter than the neutral fixation time scale of
tne ≈ 1.2× 104 generations. From this data, overdisper-
sion can easily be observed as a deviation from a Poisson
distribution (grey curve in Fig. 4). We find marked devi-
ations from Poisson statistics for all four maps: intervals
with zero appearances of pb and intervals with a very
high number of pb appearances are much more common
in the simulation data than for a Poisson distribution
with the same mean. This is clearest for the full RNA
map data, where only 0.18 % of all time intervals have
pb counts in the µ ± σ (where σ is the standard devi-
ation) range of the Poisson distribution: the counts in
73% of time intervals fall below this range (representing
the time between bursts), while 27% appear above the
range (the bursts). Similar findings hold for other pheno-
types pi (SI section S2.1), as well as for longer sequences
of length L = 30 nt (SI section S2.4).

For the random GP map, the simplest of our GP map
models, we can estimate the overdispersed distribution
analytically, which provides a reasonably good fit to
the data (cyan line in Fig 4) by capturing the follow-
ing simple phenomenology: if the population is per-
fectly monomorphic and remains on the same genotype
g0 throughout the time interval, then the expected num-
ber of pb mutants produced is simply given by the num-
ber of pb phenotypes in the mutational neighbourhood,
npb

, multiplied by the number of times each mutation oc-
curs during ∆t, which is given by ∆t/tgene (from Eq. 2).
Thus, the expected number of pb appearances depends on
the current prevalent genotype g0 through npb

. Since npb

can be any non-negative integer, we expect a weighted
sum of Poisson distributions, one for each npb

: a peak
at zero, and then successively smaller peaks at ∆t/tgene,
at 2∆t/tgene etc. These values are shown as black dot-
ted lines in the random map histogram and are close to
the peaks observed in the full distribution. The full an-
alytic expression represented by the cyan line includes
some further effects such as the fact that the population
can fall off a portal genotype during ∆t and that our
populations are not perfectly monomorphic.

Having described the dynamics on the simple random
map, let us compare all four GP maps. To help iden-
tify differences between the four distributions in Fig 4,
the cyan line that approximates the distribution for the
random GP map is included in all four subplots. First,
note that the distributions from the random GP map and
the topology GP map are quite similar. This similarity
is perhaps not surprising, because in each map the por-

3We also confine the population to a single NC, not the entire neutral set of the initial phenotype. This restriction ensures compara-
bility between our hierarchy of GP map models by preventing rare cases where the population moves to a different NC from the neutral
set of pg after a combination of a specific double mutation and genetic drift.
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increasing level of detail

topology GP map community GP map full RNA GP maprandom GP mapaverage-rate

Figure 3: Hierarchy of models with increasing complexity for the RNA GP map. The rightmost network
is the same as Fig 1: The 1094 genotypes in the initial NC, which corresponds to phenotype pg, are drawn as grey
nodes and possible point mutation connections are shown as grey lines. In addition to neutral mutations within
the NC, mutations to two different non-neutral phenotypes are shown, 1358 genotypes with phenotype pb (blue
nodes) and 176 genotypes with phenotype pr (red nodes). The leftmost model depicts a simple average-rate model
without the internal structure of a GP map, but the same mean probabilities of mutating to pb and pr. In the
random GP map, the probability that a mutation from grey will lead to pi is the same as in the RNA GP map, but
otherwise, the assignment between genotypes and phenotypes is random. The topology GP map has all the neutral
connections of the original NC, but randomised non-neutral mutational neighbourhoods, thus erasing non-neutral
correlations. The community GP map also randomises non-neutral mutational neighbourhoods but only performs
swaps within a network community, thus only partially erasing non-neutral correlations. The rightmost drawing
represents the full NC from the RNA GP map, and the three structures are shown next to it. To make the figure
easier to interpret, only an excerpt is shown for the random GP map.

tal genotypes are uniformly distributed across the NC.
Next, we note that the overdispersion increases for the
community GP map and even more for the full RNA GP
map. These maps have an inhomogeneous distribution
of portal genotypes over the NC. Thus, a population will
not produce pb when it is neutrally diffusing across areas
of the NC that are depleted in portal genotypes for pb,
and will repeatedly find portals when it is in a region
that is enriched in them, leading to further overdisper-
sion. The community structure of the neutral network
can reinforce this effect by slowing down the time scale
to go from one part of the NC without portals to one
with portals [35].

From these observations, we can deduce several factors
that contribute to the overdispersion in phenotypic vari-
ation. First, having finite and discrete mutational neigh-
bourhoods is a sufficient condition for overdispersion, as
predicted by the scaling arguments in section and shown
here for the random GP map. Secondly, the similarity
of the data from the random GP map and the topology
GP map indicates that the topology of the NC in itself,
which is caused by neutral correlations, may not lead
to much additional overdispersion in the production of

novel variation. Thirdly, the non-neutral genetic corre-
lations that are present in the community GP map and
the full RNA GP map, cause additional overdispersion.
In the full RNA GP map, the distribution actually has
a secondary peak at rates that are much higher than the
mean. This extra peak is caused by the fact that it is
no longer an exception to have several instances of pb in
a mutational neighbourhood since the few possible tran-
sitions to pb are grouped around a very small part of
the NC, as can be seen in Fig. 3. While the strength
of these non-neutral correlations will depend on many
details of the GP map [23] and differ for different tar-
get phenotypes [35], one simple source follows from the
generic high robustness of all NCs [52, 23]: If a genotype
that maps to the blue phenotype has several mutational
neighbours that also map to the blue genotype, likely,
a few of these are also mutationally accessible from one
specific part of the grey NC.
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Figure 4: Strong deviations from Poisson statistics for the appearance of phenotype pb in a population
neutrally evolving with stabilising selection for pg. Phenotype appearances are quantified by splitting the
simulation into time intervals of ∆t = 3000 generations and recording how often the given new phenotype pb appears
in each ∆t. This data is shown for all four GP map models. The number of appearances per interval is highly
overdispersed compared to a Poisson distribution with the same mean (grey line), which would be expected from
an average-rate model. For the random GP map, the data can be approximated analytically (cyan line, given by
Eq. S13 in the SI). Vertical lines highlight the values npb

∆t/tgene for a range of values npb
, depicting the expected

number of pb mutants if a perfectly monomorphic population was located at a genotype with exactly npb
discrete

instances of pb in its mutational neighbourhood. The data on the community GP map and full RNA GP map
shows even higher overdispersion than analytically predicted for the random map. Parameters: population size
N = 1000, mutation rate u = 2 × 10−5, total time 107 generations. The initial NC is the one shown in Fig 3 and
pb corresponds to the blue phenotype in the same figure. Many further examples for other phenotypes and RNA
sequences of length L = 30 nt can be found in sections S2.1 & S2.4 of the SI.
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Figure 5: How does the amount of overdispersion, quantified by the coefficient of variation from Eq. 7,
depend on being in the monomorphic regime NuL� 1 or on being in the slow-drift regime N/L� 1?
We repeat the simulations from Fig 4: In A) we vary the mutation rate u at a constant population size N = 200, to
study the effect of leaving the monomorphic regime. In B) we vary the population size N at a constant mutation
rate u = 5× 10−5 to study the fast-drift regime. The initial and final phenotypes are the grey and red phenotypes
in Fig 1. Each line in the plot stands for a different GP map (see legend). The grey dashed line denotes the Poisson
statistics prediction Vt = 1. Since the number of (neutral and non-neutral) mutations per generation scales as
NLu, we need longer run-times to obtain reliable statistics for lower values of NLu and thus run simulations for
T = max(106/(NuL), 104) generations, always rounded up to the nearest power of ten.

Influence of mutation rates and popula-
tion sizes

So far, we have found overdispersion in the arrival rates
of non-neutral phenotypic variation for several GP map 9
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models, but only considered a single population size N
and mutation rate u in each case. Next, we vary these
two parameters. For this analysis, we need a single num-
ber that summarises how much the phenotypic variation
found in a population deviates from a Poisson process.
Here we consider the time intervals tr between two suc-
cessive and non-concurrent appearances of pr, which fol-
low an exponential distribution in a Poisson process4,
and focus on the coefficient of variation, defined as

Vtr =
σtr
µtr

, (7)

where µtr and σtr are the average and standard deviation
of the time interval distribution. For a Poisson process,
we would have Vtr = 1 [53]. Higher values of the coeffi-
cient of variation indicate an overdispersed scenario, as
in Fig 1B, where very short times between two pr appear-
ances (within ‘bursts’) and very long times between pr
appearances (between ‘bursts’) are common. Since there
are limitations in quantifying the burstiness of finite data
sets using simple metrics based on the coefficient of vari-
ation (see for example [54]), we also provide the full dis-
tribution in the Supplementary Material (section S2.2).
We simulate Wright-Fisher dynamics on all four maps

for a range of mutation rates u and population sizes N
and summarise the statistics by the coefficient of vari-
ation from Eq. 7 in Fig 5. We can draw the following
conclusions from the coefficients of variation: First, in
agreement with the previous section, the community and
RNA GP maps display the most overdispersed dynamics,
and the random GP map and the topology GP map are
approximately similar.
Secondly, as can be seen in Fig 5A, overdispersion is

strongest when the population is in the monomorphic
regime, and Vtr reduces as the population becomes more
polymorphic with increasingNLu. The highest mutation
rate in our data gives a highly polymorphic population
with NuL = 12, where any two individuals are expected
to have incurred ≈ 24 mutations since their last common
ancestor N generations ago (see ref [55] with a total mu-
tation rate of uL). For this population, the random and
topology map data are near the Poisson statistics expec-
tation of Vtr = 1, but the dynamics are still overdispersed
for the full RNA GP map, suggesting that the popula-
tion needs to be even more polymorphic before it spreads
enough over the NC to wash out the larger-scale fluctu-
ations in the distribution of portal genotypes illustrated
in Fig. 1A.
Finally, as shown in Fig 5B, the overdispersion becomes

weaker in the fast-drift limit N/L < 1. In this limit, the
population will move to a new neutral phenotype before
the genotypes in its 1-mutational neighbourhood appear
repeatedly to produce a burst.
To sum up, we find that overdispersion is strongest for

large populations with low mutation rates, as expected
from the simple scaling arguments from ref [31] reviewed
in section . However, for the full RNA GP map, we ob-
serve overdispersion further into the polymorphic limit
and the fast-drift limit with N/L < 1 than the simple
scaling arguments suggest. These observations generalise
to further phenotypes (see SI section S2.3).

How bursts affect fixation times

In this section, we will test our earlier scaling arguments
about fixation from section . For simplicity, we consider a
simple adaptive scenario, where only a single phenotype
pr has a selective advantage over the initial phenotype
pg and all remaining phenotypes are unviable. In this
case, the outcome is clear: at some point, the fitter phe-
notype pr will go into fixation. Nevertheless, the timing
of this fixation will depend on the timing of pr introduc-
tions and the strength of its selective advantage. The
higher the selective advantage, the more likely an indi-
vidual pr mutant is to go into fixation and so the fewer pr
mutants are required for fixation and the lower the fix-
ation time. As shown in Fig 6, this negative correlation
between fixation time and selective advantage is indeed
observed in all four maps, as well as for an average-rate
scenario. However, the decrease of fixation time is much
greater in the average-rate case than in the GP maps:
as the selective advantage sr increases by approximately
two orders of magnitude in Fig. 6, the mean fixation time
decreases by a factor of ≈ 62 in the average-rate simula-
tions, compared to just ≈ 2.6 in the simulations on the
RNA map. As discussed in section , this weak depen-
dence on the selective advantage can be explained by the
presence of bursts: once a selection coefficient is larger
than a threshold that scales as 1/(burst size) the new
phenotype will fix almost certainly during the first burst
and so increasing the fitness further will only weakly af-
fect fixation time.
To test our quantitative understanding of the dynamics,

we also plot analytic approximations for the average-rate
model and the random map in Fig 6. For the average-
rate case, the mean fixation time tfix will scale inversely
with the product of an average-rate origin term rr and
single-mutant fixation probability P fix

pr
, like in a classic

origin-fixation model [2] (details in SI section S1.2.2):

tfix ≈ (rr × P fix
pr

)−1 (8)

To match the GP map averages, the average-rate origin
term should be rr = φprpgNuL, i.e. the product of the
mutation supply NuL and the mean probability φprpg

that a phenotype pr appears upon random mutations
from that NC [31]. The second term, the single-mutant
fixation probability for Wright-Fisher dynamics is given
in table 1. With this, we can estimate the time to fixa-
tion in the average-rate case (grey line in Fig 6), which
approximates the data from the computational average-
rate model well.
For the random map, estimating the time to fixation

of pr is more complex and thus derived in the SI (sec-
tion S1.3.4). The calculations are based on the scaling
arguments from section , but with some further terms to
approximate how the presence of some neutral genotypic
variation in the populations leads to deviations from ‘per-
fect’ bursts described by the scaling arguments. The pre-
diction is shown in Fig 6 and fits the data well for the
random GP map and the topology GP map. Deviations
between the curves only appear for highly adaptive phe-
notypes with high sr, most likely because their fixation
time is most sensitive to the neutral genotypic variation

4Strictly speaking a geometric distribution since time is measured in discrete generations.
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Figure 6: Overdispersion weakens the influence of the selective advantage sr of an adaptive phenotype
on its time until fixation. The population starts on the NC of the initial phenotype pg and a single phenotype
pr has a selective advantage of sr over pg. All other phenotypic changes are deleterious with zero fitness. We repeat
the simulation 103 times for each value of sr and record how many generations it takes on average from the start
of the simulation until pr fixes (thus, the time includes the introduction through mutations and fixation). Data is
shown for all four GP maps (the random, topology, community and RNA GP maps), as well as for an ‘average-rate’
model, where variation is introduced by a random number generator at a fixed rate for each phenotype. In all cases,
pr fixes more rapidly if its selective advantage is higher, but this decrease is much steeper for the average-rate model
than for the GP map models, which have overdispersed variation. Classic origin-fixation theory [2] (grey line, Eq. 8)
describes the ‘average-rate’ simulations well. The flatter scaling on the GP map models is captured by a simple
analytic approximation for the random GP map (cyan dotted line, Eq. S15 in the SI). Parameters: population size
N = 103, mutation rate u = 2× 10−5 so that M ≈ 78 for the random map, and NLu ≈ 0.24. The initial NC is the
same as in the preceding Figs 3 - 5, and pr is the phenotype drawn in red in Fig 1.

in the population (see section S5.2 in the SI for more
details), which we only treat approximately.

To sum up, both our analytic calculations and simula-
tion results indicate that the selective advantage of the
adaptive phenotype pr has a (much) lower impact on its
fixation time in the overdispersed scenario than in the
average-rate model, as was predicted in Section .

Implications of overdispersion for adapta-
tion with two fitness maxima

In the previous section, the outcome was always clear:
There was exactly one phenotype with a selective advan-
tage and this phenotype went into fixation in all sim-
ulations. The only question was its timing. In this
section, we investigate a more general case treated for
example in refs [3, 31], where two phenotypes, pf (for
‘frequent’) and pr (for ‘rare’), have selective advantages
over the initial phenotype p0 and either of them could
go into fixation first. These two phenotypes, pf and pr,
have different mean likelihoods to appear through ran-
dom mutations, φpfp0 and φprp0 , and they have different
selective advantages, sf and sr, over the initial pheno-
type p0, as sketched in Fig 7A. We are primarily inter-
ested in whether pf or pr will go into fixation first, as
in refs [3, 31]. Therefore, we chose phenotypes pf and

pr that are not connected by point mutations, such that
both phenotypes constitute a local maximum that is dif-
ficult to escape from.

The most interesting scenario is when the less frequent
phenotype pr has the higher selective advantage, such
that the biases in variation and selection favour different
phenotypes. For the average-rate model, the probabil-
ity Pr fixes that the fittest phenotype, pr is the first to
fix is given by a very simple ratio in the origin-fixation
regime (derived in section S1.2.3 in the SI, equivalent to
the classic result from [3]):

Pr fixes =

(
1 +

P fix
pf

φpfp0

P fix
pr φprp0

)−1

≈
(

1 +
sfφpfp0

srφprp0

)−1

(9)

where the second approximate step holds for 1/N �
si � 1. There is only one effective parameter that sets
the probability of the final outcomes, namely the ratio
of the two origin-fixation terms. This simple analytic
prediction is shown as a grey dotted line in Fig 7C and
is in good agreement with our simulation results for the
average-rate scenario. In other words, if we replace the
GP structure of Fig 7B with average rates, then Eq. 9
works very well.
How do the four levels of GP map structure affect the
probability of different outcomes? We observe in Fig 7C
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Figure 7: Overdispersion affects fixation probabilities in a landscape with two fitness maxima. A) Sketch
of the fitness landscape (scenario from ref [31]). The population initially starts with phenotype p0 and can evolve
towards one of two local maxima, phenotype pf or pr. pr is the global fitness maximum but is less likely to arise
through mutations (thus r for mutationally rare with φprp0

≈ 2.3×10−4 and f for frequent with φpfp0
≈ 7.4×10−3).

B) Sketch of the full mutational network relevant to this fitness landscape. C) For each of the GP map models from
Fig 3, as well as for an ‘average-rate’ model, where pf and pr are introduced with constant probabilities, we record
the probability that the fitter, but mutationally rarer phenotype pr goes into fixation first. This probability is
plotted against the selective bias towards pr, i.e. the ratio of the selective advantages sr and sf , both relative to p0.
In all cases, a higher selective bias towards pr makes it more likely for pr to fix, but this trend is less pronounced for
the overdispersed dynamics on the GP maps. The simulation results are well-predicted by theoretical calculations
both for the random GP map (cyan dashed line, Eq. 10) and for the average-rate model (grey dashed line, Eq. 9).
Parameters: N = 500, u = 2× 10−5, probabilities based on 1000 repetitions.

that a higher selective advantage of pr still raises the
probability that pr fixes, but this increase is dramati-
cally weaker for the bursty dynamics on the GP maps.
The reason follows from our arguments about fixation
times: if we are in the saturating regime of large bursts
with sM � 1, the outcome is set primarily by whether
the first burst to appear is one of pf or pr mutants, which
in turn is set by the probability of finding a portal geno-
type and not by selection. If we assume that pr and
pf appear and fix independently from one another, then
the probability that pr fixes first depends on their indi-
vidual fixation times tfix

i as follows (see Supplementary
Information section S1.1.1):

Pr fixes = (1 + tfix
r /tfix

f )−1 (10)

which reduces to Eq. 9 if we use the average-rate ex-
pression (Eq. 8) for the fixation times. If instead we use
the fixation times from our random GP map calculations
(Eq. S15 in the SI), then we find good agreement with
the simulations for the random map (see the teal line in
Fig. 7). Thus, the reduced sensitivity to selective advan-
tages in this calculation simply comes from the reduced
sensitivity to selective advantages in the fixation times.
Given the success of Eq. 10 for the random GP map, we
show in SI section S1.1.2 that Eq. 10 can easily be gen-
eralised to multiple peaks, as long as we assume that the
different phenotypes are introduced independently from
one another. If there are n adaptive phenotypes, the
probability that phenotype p1, with fixation time tfix1 ,

will fix before the others is given by:

Pp1fixes =

(
1 + tfix1

n∑
i=2

1

tfixn

)−1

(11)

We demonstrated via simulations that in the presence
of bursts, the first fixation event on the two-peaked land-
scape can depend much less on the selective advantages
of the peaks, and much more on how likely they are to
appear as potential variation than one would expect from
average-rate models. Note that our scenario differs from
the “survival of the flattest” effect [56, 57], which also
predicts preferential fixation for phenotypes with larger
neutral sets or higher robustness, but which only applies
at high mutation rates. Similarly, arguments based on
“free-fitness” [58, 59], can also be used to explain why
phenotypes with larger neutral sets are more likely to
fix. The free-fitness formalism is inspired by statisti-
cal mechanics and depends on steady-state assumptions.
It would be more appropriate for a fixed fitness land-
scape on much longer time scales when the population
has repeatedly transitioned between the different pheno-
types. In such a setting, the details of the short-term
dynamics would be less important, including the effects
of bursts. Nevertheless, because phenotypes with larger
neutral sets tend to have shorter tport [31], all of these
different limits above end up predicting a relative prefer-
ence for phenotypes with larger neutral sets. The ques-
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Figure 8: Strong deviations from Poisson statistics in two further GP maps, a protein lattice model
and Richard Dawkins’s biomorphs. The analysis in Fig. 4 is repeated on two different GP maps: (left) The HP
(‘hydrophobic-polar’) lattice model, a simple model of protein folding, where genotypes are mapped to phenotypes
based on free-energy minimisation. The initial and final phenotypes used in this specific analysis are shown in the
top-right corner. (right) Richard Dawkins’s biomorphs, a toy model of development, where numeric phenotypes are
mapped to 2D images as phenotypes based on a recursive growth process. The initial and final phenotypes used in
this specific analysis are shown in the top-right corner. Data for further choices of phenotypes in each of these two
maps are found in the SI (section S3). Parameters: population size N = 1000, mutation rate u = 2 × 10−5, total
time 107 generations.

tion of precisely where in biology we should expect each
scenario to hold remains open.

Overdispersion in arrival rates on alterna-
tive GP maps

In this paper, we have primarily used the sequence-to-
RNA-secondary-structure GP map to computationally
analyse the causes and consequences of bursts. Many of
our arguments for this specific system should hold more
generally. We therefore study two more GP maps in this
section.
First, we simulate an evolving population on a GP map

defined by the HP (‘hydrophobic-polar’) lattice model,
a simple and popular schematic model of protein fold-
ing [45, 14]. A genotype is any string of residues of type
‘H’ (hydrophobic) and ‘P’ (polar). A phenotype is de-
fined as the minimum-free-energy lattice configuration
of that genotype. This GP map is conceptually similar
to that of RNA. In both cases, a genotype made up of
letters from a fixed alphabet (‘GACU’ for RNA, ‘HP’
in the protein lattice model) is mapped to a discrete
folded structure based on biophysical rules. We observe
from simulations that new phenotypes are introduced in
an overdispersed fashion (Fig. 8A), similar to what was
found for RNA in Fig. 4. However, unlike for RNA, the
observed distribution is not very different to that of the
corresponding random map (drawn as a teal line), indi-
cating that genetic correlations, which distinguish a GP
map from its corresponding random map, may be weaker
in this map, in agreement with prior direct measurements
of the genetic correlations in this model [23].
As a second GP map, we turn to Richard Dawkins’s

biomorphs, first proposed in ‘The Blind Watch-
maker’ [20] as a toy model of how developmental pro-
cesses bridge between the genotypic and phenotypic lev-
els. In this model, genotypes made up of nine integers
are fed into a recursive growth process to produce 2D
drawings as ‘phenotypes’. Although this model differs
substantially from the biophysical models discussed so
far, we nevertheless still find overdispersed phenotypic in-
troductions in Wright-Fisher simulations of a population
evolving on this GP map (Fig. 8B). Comparisons with
our analytic calculations were not done for the biomorphs
system since the numeric nature of the biomorphs’ geno-
types would complicate our calculations too much5.
Taken together, these results show that the overdisper-

sion in the introduction of new phenotypes which we
found for the RNA GP map carries over to two further
GP maps, one biophysical one mimicking protein folding
and a more schematic one representing recursive growth
processes.

Conclusions and Discussion

Main conclusions

Non-Poissonian bursts of size M in the arrival of novel
phenotypic variation p are typical in evolutionary models
on GP maps, as long as some phenotypes are only acces-
sible from a relatively small number of ‘portal’ genotypes,
and the population is in the weak-mutation or monomor-
phic regime [31, 35]. Here we explore these bursts in
detail, showing in particular that they strongly affect
adaptive dynamics. In particular, above a threshold of
selection coefficients s & 1/M � 1 the time to fixation

5In the biomorphs GP map, each site is occupied not by a discrete letter representing a base, but by an integer, which can change
by ±1 in a single mutation. Since we can only consider a finite number of genotypes, we have to set limits on the values that these
integers can take and thus exclude some mutations (see ref [19] for more details). This means that the number of allowed mutations
per genotype (i.e. the size of a mutational neighbourhood) varies from genotype to genotype, which is not considered in our analytic
calculations and is probably an artefact of this particular model.
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is dominated by the probability of finding a portal geno-
type, and so depends only weakly on fitness.

To explore the effects of “bursty” statistics on the ar-
rival and fixation of novel phenotypic variation, we fo-
cused on the RNA GP map. We measured the amount
of overdispersion for a set of five models with increas-
ing amounts of structure, which allowed us to separate
out several different causes of overdispersion. Adding the
full connectivity of the neutral component, e.g. including
all neutral correlations, does not change the overdisper-
sion by much beyond simply taking the discrete and fi-
nite nature of mutational neighbourhoods into account.
However, the introduction of further non-neutral genetic
correlations, such as those quantified by Greenbury et
al. [23], can markedly increase the amount of overdisper-
sion. Roughly speaking these non-neutral correlations
imply that genotypes that have access to a novel phe-
notype in their one-mutational neighbourhood are clus-
tered together in the NC, generating additional sources
of bursty behaviour. We further demonstrated that, as
predicted in ref [31], the amount of overdispersion in the
introduction of a novel phenotype further depends on
the details of the evolving population: genetically di-
verse populations or small populations undergoing rapid
genetic drift average over several genotypes in the neutral
component and therefore produce new phenotypes at a
more constant rate than large monomorphic populations
do.

By evolutionary dynamics simulations on the RNA GP
map, we gave explicit examples of where overdispersion
in the arrival of novel phenotypic variation impacts the
dynamics of adaptation. We showed how bursts imply
that fitness differences play a smaller role in determining
fixation times and evolutionary outcomes than in a Pois-
son model with the same average mutation rates. This
reduced influence of selective advantages can be under-
stood from a simple argument: The number x of intro-
ductions of p that are needed for a successful fixation
event strongly depends on the selective advantage. In
average-rate models, the time until x mutants appear
depends linearly on x, but in a bursty model, the time
until x instances of p appear can be approximated by
the time to the first burst, as long as the burst size is
M � x. Then the exact value of x and thus the selective
advantage becomes less important. One consequence of
these phenomena is that if multiple phenotypes are fit-
ter than the one on which the population resides, then
bursts imply that the relative effect of differences in se-
lection coefficients is much less important than it would
be in an average-rate model. Instead, the probability of
the population moving to a portal genotype, which de-
pends on the frequency of the relevant phenotype as well
as on the distribution of portal genotypes, plays a more
important role in what eventually fixes. We explicitly
demonstrated this effect for a two-peaked landscape and
showed how to extend our analytic calculations to mul-
tiple peaks. We hypothesize that these effects of overdis-
persion may help explain why frequencies of phenotypes
found in nature can in some cases (such as RNA sec-
ondary structures [50, 60] and the topology of protein
complexes [61]) follow biases in arrival rates over many
orders of magnitude even in the presence of natural se-

lection.

Dependence of overdispersion on the pop-
ulation genetic regime

Let us first review the conditions on the population pa-
rameters under which bursts are expected: Our analysis
in Fig 5 indicates that bursts appear whenever the pop-
ulation is monomorphic (NuL < 1) and sufficiently large
(N/L > 1), in agreement with the scaling arguments
in section and ref [31]. Burstiness persists for a larger
parameter range if there are non-neutral correlations in
the underlying GP map, such as in the community and
full RNA GP maps. This is because populations need to
spread out further over the neutral set to escape local het-
erogeneities, something they can achieve either through
genetic diversity at high NuL or through fast genetic
drift at low N . Thus, we observe burstiness on the RNA
GP map even when NuL ≈ a or N/L ≈ b up to some
finite constants a > 1 and b > 1 that depend on the
strength of the non-neutral genetic correlations.
The second condition, that the population is sufficiently

large for the bursts to appear (N/L & b), is likely to be
met in most realistic cases. The first condition, how-
ever, that the population is monomorphic (NuL . a),
is more restrictive, and unlikely to be met for microor-
ganisms, where populations are typically large, especially
not for RNA viruses, which additionally have high mu-
tation rates [4]. These cases would be better described
by the infinite-population limit commonly studied for
GP maps [13, 62, 25], where populations spread over
many genotypes in a NC and average over the inhomo-
geneities that would otherwise lead to bursts. For ef-
fective population sizes Ne in vertebrates, on the other
hand, Lynch has estimated [63] that Neu is typically
0.00027 < Neu < 0.0010. In that case, NeuL < 1 for any
genes with L ≤ 1000. Of course, the evolutionary dy-
namics for these classes of organisms are generally more
complex than the simple model we used here, so further
work is needed to work out when and where the effect of
bursts will be most prominent.

Generalisation to other molecular and de-
velopmental phenotypes

Let us next turn to the conditions on GP maps for bursty
dynamics: The minimum criterion is that only a fraction
of genotypes in a neutral component are portals to phe-
notype pi. That this should be generically the case fol-
lows from fairly general scaling arguments, and also from
the positive link between neutral set size and evolvabil-
ity [24], where neutral exploration allows a larger number
of novel phenotypes to be discovered than would be pos-
sible from a single genotype. Another way of thinking
about this aspect is in terms of epistasis since if only
a few genotypes are portals, then the effect of a mu-
tation depends on the genotype to which it is applied,
even within a neutral set [64]. Not all kinds of epista-
sis would lead to bursts as the following simple example
shows: if every genotype has one mutation to pi, but
this mutation is at different sites for different genotypes,
this would not lead to bursts. Nevertheless, epistasis is
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common in genotype-phenotype or genotype-fitness rela-
tionships [65, 26, 66, 67, 68]. A more detailed investi-
gation is needed to flesh out the links between epistasis,
which is quite a broad concept, and the conditions for
bursts, before drawing further conclusions. More direct
evidence for the prerequisites for bursts comes from GP
map studies that have shown that different genotypes in
a neutral set have different non-neutral mutational neigh-
bourhoods. Examples exist both in molecular GP maps
(such as RNA [24, 69]) and higher-order GP maps (such
as in a model of neural development [70] and gene regula-
tory networks [16]). Moreover, non-neutral correlations,
i.e. cases where these differences exceed those expected
in the random GP map, have been observed in a range
of molecular GP maps (for example RNA, protein qua-
ternary structure and protein tertiary structure [23]) and
are likely to exist in further GP maps.

One additional limitation of our results is that we
restricted mutations to single nucleotide substitutions.
However, since non-neutral correlations have also been
found when single nucleotide insertions and deletions are
included [71], our results should generalise to a broader
range of mutations. This question also calls for further
study.

Overdispersion and ‘soft’ sweeps

Since bursts lead to repeated introductions of the same
phenotype, they are reminiscent of the discussion around
‘soft sweeps’ [72, 73, 74], fixation events in which sev-
eral advantageous alleles sweep to fixation in parallel.
Whenever soft sweeps originate from new mutations, sev-
eral advantageous alleles with similar selective advan-
tages must indeed be introduced in close succession [72],
such that they sweep to fixation in parallel without
out-competing each other. While non-neutral correla-
tions could raise the likelihood that two substitutions
from a given genotype have the same phenotype and
thus the same fitness, the bursts discussed in this paper
are unlikely to be directly linked to ‘soft sweeps’ since
they are predominantly relevant in the ‘weak-mutation-
strong-selection’ regime (NuL . 1), where mutations
arise rarely and sweep to fixation before further muta-
tions occur [2]. Thus, even the time between two mu-
tants in a ‘burst’ would be too long for a joint fixation
process.

Future work

The strong effect of GP map structure on the statistics of
the introduction of novel phenotypic variation observed
here raises many directions for future research. Firstly,
there is the question of the strength of non-neutral cor-
relations that amplify bursts beyond the simpler argu-
ments based on finite mutational neighbourhoods. This
can only be addressed with more detailed ways of quan-
tifying these correlations in different GP maps and by
using the results in further calculations. There is a large
parameter space to explore, with different GP maps, dif-
ferent NCs, and of course parameters such as population
size and mutation rate.

Secondly, we derived expressions for the relative fixa-

tion rates for a two-peaked landscape or a multi-peaked
landscape with one key assumption: that the introduc-
tion processes of different phenotypes are independent
of one another. This assumption would break down, for
example, if the mutational connections to two or more
phenotypes of interest were clustered around the same
part of the NC. Future work should address such phe-
nomena both analytically and computationally.

Thirdly, we have worked with a GP map, where each
genotype corresponds to a single phenotype. Further
questions arise around GP maps that have a non-
deterministic relationship between genotypes and phe-
notypes [75]. Similarly, the concepts should be applied
to transcription factor binding landscapes, which are also
more complex GP maps, where each genotype can bind
to multiple transcription factors with a varying quanti-
tative binding strength [76]. Since L is typically short in
this case, bursts could play a role.

Furthermore, our analytic approximations only use an
approximate treatment of mildly polymorphic popula-
tions. While this is sufficient to estimate slight de-
viations from a perfectly monomorphic population, fu-
ture work should provide analytic approximations for
populations on GP maps that fill the gap between
the idealised cases of highly polymorphic populations,
the infinite-population limit, and the weak-mutation-
strong-selection/monomorphic limit. Similarly, future
work could relax the simplifying assumptions used in
our computational simulations, for example by using a
continuous-time Gillespie model as in ref [77] instead of
the simpler Wright-Fisher model.

Moreover, more detailed evolutionary models of specific
evolutionary processes should include a more detailed
treatment of the mutation process. While simple mu-
tational biases such as a transition/transversion bias are
unlikely to lead to qualitative changes in our predictions,
there are interesting parallels between bursts and clusters
of identical mutations arising from premeiotic mutational
events [78], which may amplify the effect of bursts.

Finally, the big question is how to observe these ef-
fects experimentally. Exactly the points of difference be-
tween our bursts and existing analyses of overdispersion
in adaptive evolution are two factors that make our burst
difficult to investigate experimentally: first and most im-
portantly, our bursts are fundamentally a phenotypic ef-
fect, and secondly, they are visible in the timing of newly
introduced variation and only indirectly affect the timing
of fixations. Thus, the bursts described in this paper can
only be directly observed if we have both genotypic and
phenotypic information for an evolving population for the
entire population, even mutations that have just been
introduced. An additional difficulty is that ‘bursts’ are
most prominent in the weak-mutation regime, whereas
many well-studied examples of adaptation are microbes,
which are not well-approximated by this regime. Thus,
direct evidence for bursts may be difficult to obtain. De-
spite these difficulties, experimental tests of our predic-
tions should be designed and performed, and indirect
evidence may be possible through the bursts’ effect on
fixation, i.e. analyses similar to Fig. 6.
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Methods

RNA GP Map

For the RNA GP map, we folded all possible sequences
of length L = 12 nt with the ViennaRNA package [44]
(default parameters, version 2.4.14). We took each se-
quence’s folded structure as this genotype’s phenotype
but considered sequences to be non-folding if the mfe
criterion was met by two degenerate structures. NCs are
constructed in NetworkX [79] and drawn with its force-
layout algorithm.

Lattice protein GP map

For the lattice protein GP map, we use the code and
parameters of ref [80]: a compact lattice of size 5 ×
5 for computational feasibility and an established en-
ergy model [81], which simply favours hydrophobic-
hydrophobic contacts by assigning them one free energy
unit.

Biomorphs GP map

Richard Dawkins proposed the biomorphs system, a sim-
ple recursive growth process, to illustrate how mutations
on the genotypic level and selection on the phenotypic
level can lead to successful adaptation [20]. In Dawkins’s
original formulation, genotypes consisting of nine inte-
gers are mapped to two-dimensional images as pheno-
types. For our computational analysis, we need to con-
vert these images into discrete phenotypes, and for this,
we use the data and code from our earlier work [19],
where images were simply converted into binary pixels
on a 30 × 30 grid. Unlike for the molecular models, the
sequence length is fixed in the biomorphs, but the range
of integers needs to be restricted to make genotype space
finite and allow for computational analysis. As in our
earlier work [19], we include all ≈ 4.6 × 107 genotypes
with −3 ≤ gi ≤ 3 for the first eight genotype positions
and 1 ≤ g9 ≤ 8 for the ninth genotype position (the last
position needs to be positive since it sets the number of
recursions rather than being used for x/y-coordinates).

Hierarchy of GP maps

We start by identifying all sequences that belong to
a given neutral component (NC), i.e. a mutationally
connected set of sequences folding into the same pheno-
type [26]. Then we choose one initial NC in the RNA
GP map to build simpler models for this NC (this was
done twice, once for the NC in Fig 1 and once for the one
in Fig 7. First, we determine the mean mutation rates
φpip0

for that NC, i.e. what fraction of mutations start-
ing at this NC give a specific new phenotype pi. Note
that all φpip0

sum to one by definition when the proba-
bility of neutral mutations, the robustness ρ = φp0p0

, is
included. We also identify the network communities of
this NC following Weiß and Ahnert’s [32] method. Then
the three simplified models were constructed from this
NC information.
Random GP map: in this map, phenotypes are as-
signed to genotypes at random and the only input are

the frequencies of each phenotype [31]. Here, we set the
frequency of phenotype pi to φpip0

, so that the mean
mutation probabilities will match those for the initial
NC in the RNA map.
Topology GP map: here the genotypes that form part
of the initial NC are left unchanged so that the topology
of this NC matches the one in the RNA map. The un-
changed NC topology already ensures that the fraction
of neutral mutations matches that in the RNA map. All
remaining genotypes are assigned random phenotypes
(except the initial phenotype p0), each with a probabil-
ity proportional to the rate from the RNA NC, φpip0

.
Here these probabilities had to be renormalised so all
φpip0

without the neutral mutations for p0 sum to one.
Community GP map: here, we start with the full
RNA data and randomise the mutational neighbour-
hood of one community in the initial NC at a time: for
each community, we identify all genotypes that are muta-
tional neighbours to this community, but not to another
community in the initial NC. We shuffle the phenotypes
associated with these genotypes to randomise the non-
neutral mutations within each community. To keep the
mean mutation probabilities intact, we identify subsets
of genotypes with exactly n connections to the NC and
only perform swaps within each subset.

Simulations of evolving populations

For the evolutionary dynamics simulations on GP maps,
we followed previous studies of evolutionary simula-
tions on GP maps [31, 82] and implemented a Wright-
Fisher model of a fixed number N haploid individuals in
Python. Mutations were modelled to occur with constant
probability u per reproduction event and site and the
phenotype of the mutated sequence was given by the GP
map. The population was initialised on a single genotype
in the selected NC and then evolved neutrally for 10N
generations before any data was collected, to randomise
these forced initial conditions, as in [31]. We considered
a fixation event to have occurred if less than 25% of the
population carried the initial phenotype. To exclude rare
and irreproducible jumps to other NCs of the neutral set
of the initial phenotype p0, which could confound our
analysis, we set only genotypes in the initial NC of p0 to
fitness fp0

= 1.

To simulate the average-rate scenario, we also performed
simpler simulations without a GP map. Here, we simply
assumed that L× u mutations occur per individual and
generation, to match the GP map case, where the mu-
tation rate is given per-site. In the average-rate model,
each mutation has the same probability φpip0

of giving
phenotype pi and a constant probability ρ = φp0p0 of
leaving the initial structure unchanged. These rates are
free parameters in the average-rate model, which we set
to match the corresponding GP map values for the ini-
tial NC. For the rare event that a phenotype pj different
from the initial phenotype exists in the population and
mutates, we simply set rates that match the mean rates
for mutations on that phenotype in the RNA map (rather
than a specific NC of that phenotype).
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[66] Júlia Domingo, Pablo Baeza-Centurion, and Ben
Lehner. The causes and consequences of genetic in-
teractions (epistasis). Annual Review of Genomics
and Human Genetics, 20:433–460, 2019.

[67] Claudia Bank. Epistasis and adaptation on fitness
landscapes. Annual Review of Ecology, Evolution,
and Systematics, 53:457–479, 2022.

[68] Milo S Johnson, Gautam Reddy, and Michael M De-
sai. Epistasis and evolution: recent advances and an
outlook for prediction. BMC Biology, 21(1):1–12,
2023.

[69] Walter Fontana and Peter Schuster. Shaping space:
the possible and the attainable in RNA genotype–
phenotype mapping. Journal of Theoretical Biology,
194(4):491–515, 1998.

19

Page 19 of 20

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

Molecular Biology and Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae085/7661020 by guest on 05 M
ay 2024



[70] Sean Psujek and Randall D Beer. Developmental
bias in evolution: evolutionary accessibility of phe-
notypes in a model evo-devo system. Evolution &
development, 10(3):375–390, 2008.

[71] Nora S Martin and Sebastian E Ahnert. Inser-
tions and deletions in the RNA sequence–structure
map. Journal of the Royal Society Interface, 18
(183):20210380, 2021.

[72] Jeffrey D Jensen. On the unfounded enthusiasm for
soft selective sweeps. Nature communications, 5(1):
5281, 2014.

[73] Daniel R Schrider and Andrew D Kern. Soft sweeps
are the dominant mode of adaptation in the hu-
man genome. Molecular biology and evolution, 34
(8):1863–1877, 2017.

[74] Talia Karasov, Philipp W Messer, and Dmitri A
Petrov. Evidence that adaptation in drosophila is
not limited by mutation at single sites. PLoS genet-
ics, 6(6):e1000924, 2010.

[75] Paula Garca-Galindo, Sebastian E. Ahnert, and
Nora S. Martin. The non-deterministic geno-
typephenotype map of RNA secondary structure.
Journal of The Royal Society Interface, 20(205):
20230132, 2023. doi: 10.1098/rsif.2023.0132.
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