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Abstract. Boolean threshold networks (BTNs) are a class of mathe-
matical models used to describe complex dynamics on networks. They
have been used to study gene regulation, but also to model the brain, and
are similar to artificial neural networks used in machine learning appli-
cations. In this paper we study BTNs from the perspective of genotype-
phenotype maps, by treating the network’s set of nodes and connections
as its genotype, and dynamic behaviour of the model as its phenotype.
We show that these systems exhibit (1) Redundancy, that is many geno-
types map to the same phenotypes; (2) Bias, the number of genotypes per
phenotypes varies over many orders of magnitude; (3) Simplicity bias,
simpler phenotypes are exponentially more likely to occur than complex
ones; (4) Large robustness, many phenotypes are surprisingly robust to
random perturbations in the parameters, and (5) this robustness cor-
relates positively with the evolvability, the ability of the system to find
other phenotypes by point mutations of the parameters. These properties
should be relevant for the wide range of systems that can be modelled
by BTNs.

Keywords: Boolean networks · Gene regulatory networks ·
Genotype-phenotype maps · Input-output maps

1 Introduction

Boolean networks (BN) were first introduced by Stuart Kauffman as models
of gene regulatory networks (GRNs) [28]. Each gene is abstracted as a binary
(Boolean) variable that can be either on or off. A temporal dynamics is imposed,
where each gene interacts with others through a Boolean function. For example,
if Si(t) is the state of a node i at time t, then

S1(t + 1) = (S1(t) AND S2(t) ) OR NOT ( S3(t) AND S4(t) ) (1)

is the state of the node S1 at time t + 1, and this is influenced by the states of
nodes S2, S3, and S4. The state of every node in the network is then updated
synchronously with all other nodes in the network with rules similar to the
example above. The requirement of synchronicity is sometimes dropped, in what
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is called asynchronous updating. In Kauffman’s original formulation [28], he
defined an NK network of N nodes with K connections. Figure 1 shows an
example of this kind of network, for N = 3 and K = 3, showing how different
initial configurations of the network can lead to different attractors in its state
space. Here attractors refer to steady state behaviour that the system falls into.

Fig. 1. Example of Boolean network with N = 3, K = 3. In this network, all nodes are
regulated by the whole network (N = K). The table on the left defines the Boolean
functions that describe how the state of nodes A, B and C will change according to
their states in the previous time step. The 23 = 8 states in state space are organised
in two attractors, one fixed point and one 3-cycle, both shown in blue.

Even though they are highly simplified models, BNs are known to be
extremely versatile. They have been used to represent complex systems at mul-
tiple scales, ranging from gene regulatory networks to ecosystems [29].

In the context of gene regulation, one popular application has been to model
pluripotent cells as a gene network with many attractors [29]. Each cell type
then corresponds to a different attractor. Another famous application of the BN
model was to segment polarity in Drosophila [2], where it was shown that sim-
plifying a highly complex differential equation model of the GRN to a much
simpler BN model nevertheless led to good agreement with experiments. Simi-
lar successful applications have since proliferated, including BN models for the
GRNs regulating flower development [18], signal transduction in human fibrob-
lasts [25], plant cell signalling [33], and mammalian cortical development [20].
BNs have also been used to study more general properties of GRNs, such as
robustness [5,11,12,41] and evolvability [6,11,12,41].

In the context of neural networks, different attractors have been interpreted
as different memories stored in the network [26,27,35]. Attractors can also rep-
resent different heartbeat rhythms for cardiac systems [21], or alternative species
distributions when modelling ecosystems [34].

The versatility of BN models comes at the price of having a large parameter
space. As each node in a NK network is assigned a Boolean function on the
2K possible states of those K nodes, there are 22K

possible functions per node,
meaning that for N = 3 and K = 3, as in Fig. 1, there are over 3 × 109 possible
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networks, whereas for a network with N = 5 and K = 3 this number grows to
approximately 1017. One way to overcome the impractical size of the parameter
spaces of BNs is by focussing on a subset of all BNs. Boolean threshold networks
(BTNs) correspond to one of these subsets, and are characterised by simple
interaction rule:

Si(t + 1) =

�
1, if

�N
j=0 wij Sj(t) > 0

0, if
�N

j=0 wij Sj(t) < 0
(2)

where the weights wij indicate the strength and sign of the regulation of node
i by node j. The value of Si(t + 1) when

�N
j=0 wij Sj(t) = 0 varies across

studies, having values such as Si(t + 1) = 1, 0, or Si(t) itself. This choice has
been shown not to have a big impact on results [14,31,36]. In this work, we will
model GRNs as defined in Eq. (2), with Si(t + 1) when

�N
j=0 wij Sj(t) = 0, and

wij ∈ {1, 0, 1}, respectively indicating upregulation, downregulation and lack
of interaction between genes. This choice reflects the strong assumption that
the effect of activatory and inhibitory interaction between genes is essentially
additive, and that all gene-gene interactions are equally strong [48].

The threshold function in Eq. (2) inevitably reduces the range of behaviours
of a GRN [48], but it also reduces its parameter space by orders of magnitude.
Instead of requiring N Boolean functions to be defined, as would be the case for
a Boolean network, a BTN can be completely specified by its N × N adjacency
matrix wij . Each GRN or genotype can also be treated as a node in a genotype
network where two genotypes are neighbours if they differ in only one term in
their wij matrix [12]. Since every connection can be either −1, 0 or 1 the whole
genotype space is composed of 3N×N gene networks, each one connected to 2N 2

neighbours.
BTNs have also been used to successfully model gene expression, in GRNs

such as the ones regulating lymphocyte differentiation [38], signal transduction
in human fibroblasts [25], and the mammalian cell cycle [19]. One of the most
successful applications of BTNs is in modelling the yeast cell cycle [14,15,31],
which led to studies predicting knockout mutant phenotypes [7,15], as well as
multiple studies providing explanations for the designability and robustness of
the wild-type phenotype [3,4,8,10].

2 Genotype-Phenotype Maps

When used to study the evolutionary properties of GRNs, the mapping from a
Boolean network’s wiring to its dynamic properties can be studied as a genotype-
phenotype (GP) map. GP maps have proven to be a useful lens in understanding
the origins of phenotypic variation, and how this variation can steer evolution
even before natural selection comes into play [39,46]. Much of this understanding
comes from a growing body of research structural properties shared by multi-
ple GP maps [1,24,46]. These properties include: (1) Redundancy, meaning that
many genotypes often map to the same phenotypes, (2) Bias, referring to how the
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majority of genotypes map only to a handful of phenotypes [1,23], (3) Simplic-
ity bias, i.e. how simple phenotypes correspond to larger fractions of genotype
space [16], (4) a degree of mutational robustness which is much larger than what
would be expected for a random uncorrelated GP map [1,22,24,24], and (5) a
positive correlation between robustness and evolvability [23,45,46].

Provided that the genotype of a GRN can be described by its topology and
represented by its adjacency matrix wij , one still needs to choose how to rep-
resent its phenotype. Different definitions of phenotype might be more or less
appropriate depending on what is being measured. For example, when modelling
the regulation of circadian rhythm by a GRN that produces oscillating behaviour
for multiple initial conditions, it might be convenient to define the phenotype of
that GRN as its cyclic attractor in state space. If one is interested in the pos-
sible cell fates of a pluripotent cell, it might be better to look at the whole list
of attractors. Alternatively, one might define a phenotype concerning a specific
set of initial conditions, or the transitions between certain states. With that in
mind, we explore two different phenotype definitions, that capture aspects of
different kinds of biologically relevant phenotypes:

Phenotype 1: we define the phenotype of a GRN as the attractor occupying the
largest fraction of its state space.

Phenotype 2: we define the phenotype as a list of the attractors corresponding
to all possible initial states of the network.

The two phenotype definitions described above are very general, and might
not be suited for all GRNs. For instance, it might be the case that not all initial
states of the network are biologically relevant, or that BTNs that produce very
similar behaviour from a dynamical systems point of view might represent very
different biological behaviours. In spite of these limitations, we find that all
phenotype definitions studied here result in GP maps which show many of the
structural properties of GP maps listed above.

3 Results for Phenotype 1: Dominant Attractor

To identify the attractor with the largest basin for each genotype, we use the
same method as Nochomovitz and Li [36]: first, we use the update function
from Eq. (2) to produce a list of 2N “next states”, which we then connect as a
directed graph from state to state, as illustrated in Fig. 1. We then use Tarjan’s
algorithm to calculate the strongly connected components of this directed graph,
that is, the sections of state space where every state can reach every other
state [42]. As the threshold update function is deterministic, every state will
only lead to one other state, and the strongly connected components of the state
graph will be the attractors of the BTN state space. Finally, we also take into
account how multiple attractors might be equivalent under symmetry operations.
These operations include permuting gene order, shifting the cyclic attractors by
any number of steps, or swapping 1s for 0s for a given gene. This last form of
symmetry has been described as a “gauge symmetry” [11,12]. We calculate the
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dominant attractor for every GRN in the genotype space of all BTNs with N
genes. In the sections below, we present the properties observed for this GP map,
for the full enumeration of all 316 ≈ 43 million N = 4 networks.

3.1 Phenotype Frequencies Vary over Orders of Magnitude

As there are many more genotypes than phenotypes in this GP map, it is natural
that the map will show some redundancy – genotypes which map to the same
phenotypes. In the GP map literature, the concept of redundancy is measured
in terms of neutral networks, i.e. regions of a discrete genotype space that map
to the same phenotype. The number of genotypes in a neutral network has
been given different names in the literature, such as the phenotype’s degeneracy
level [9], abundance [13], designability [32,36], genotype set size [37], neutral set
size [39] or neutral network size (NNS) [40,45]. In this work, we will also use
the word frequency, meaning the NSS of a phenotype divided by the size of the
whole genotype space. The frequency of a phenotype can also be understood as
the probability that a randomly chosen genotype will map to that phenotype.

We performed a full enumeration of all 316 ≈ 4.3 × 107 GRNs with N = 4
genes. As can be seen in Fig. 2a, the frequencies of 2759 phenotypes observed
for N = 4 networks range over many orders of magnitude. The distribution of
phenotype frequencies is very skewed, with the most common attractor type,
which is a single fixed point, covering 67% of genotype space. This uneven dis-
tribution of phenotype frequency is also observed within cyclic outputs of the

Fig. 2. This GP map shows redundancy and bias. (a) Rank plot for the number of
gene networks that produce each one of all the 2759 dominant attractors found from
a full enumeration of of N = 4 gene networks. It is a very uneven distribution, with
99% of all genotypes mapping to 0.38% of all phenotypes, and the most designable
phenotype, a single fixed point, corresponding to 67% of the genotype space. The
skewed distribution of neutral network sizes is also observed within cyclic outputs of
the same length, shown in (b) and (c) for lengths L = 4 to 7 respectively.
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same length, as already noted for N = 4 BTNs by Nochomovitz and Li [36].
Figures 2b and c illustrate this pattern for cyclic attractors of lengths L = 4 and
L = 7 respectively.

3.2 Low-Complexity Attractors Correspond to More Genotypes

Not only do Figs. 2b and c show that there is a wide distribution of phenotype
frequencies even among cyclic attractors of the same length, but they also show
that the frequency of L = 7 cyclic attractors is orders of magnitude lower than
that of L = 4 attractors. This is shown in Fig. 3c for other attractor lengths.
Overall, the larger the cycle, i.e. the more states in the cycle, the smaller the
number of GRNs which will produce that phenotype.

This negative relation between phenotype frequency and cycle length is part
of a wider pattern, where low-complexity phenotypes take over larger fractions
of genotype space. This behaviour, which Dingle et al. call simplicity bias [16],
is found in numerous input-output maps, including but not limited to RNA
sequence-to-structure maps [17], stochastic models in financial mathematics [16]
and parameter-to-behaviour maps in deep neural networks [44]. This pattern has
also been reported for genotype-phenotype maps for protein quaternary struc-
tures and macromolecular self-assembly and generative models of tree geome-
tries [16]. And even though the specific definition of a phenotype depends on

Fig. 3. This GP map shows simplicity bias. (a) and (b) show two cyclic attractors,
of length L = 2 states and L = 6 states respectively, for a GRN with N = 10 genes.
In both panels, every column represents the binary state of a node, with yellow for
1 and blue for 0. (c) and (d) show this GP map is biased towards low-complexity
phenotypes. Both measures show the number of GRNs mapping to a phenotype is
bounded by an exponential decay in its complexity, as measured by their attractor
length and Kolmogorov complexity respectively. Finally, (e) shows a heat map for all
N = 4 GRNs, comparing attractor cycle length to attractor complexity, indicating that
more GRNs produce phenotypes of lower complexity, even when comparing phenotypes
of the same cycle length. Darker colours represent higher phenotype frequency.
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the details of every GP map or input-output map, as long as a phenotype can
be represented a binary string, its Kolmogorov complexity can be approximated
using the Lempel-Ziv algorithm [30], as described by Dingle et al. [16]

Figures 3a and b respectively show examples of simple and complex pheno-
types, for a GRN with N = 10 genes. Both panels represent cyclic attractors,
with every column representing the binary state of a node and every row indicat-
ing a state in the cyclic attractor, with yellow for 1 and blue for 0; for example,
Fig. 3a indicates the 2-state cycle 1000110001 → 1110001110, while Fig. 3b
indicates a 6-state cycle starting with 0000001010 → 1001110111.

Even though the length of a cyclic attractor in a BTN can be used as a
proxy for its complexity [36], cycle length alone does not explain the variation
of phenotype frequency that also happens among the cycles of the same equal
length, as shown above in Figs. 2b and c.

Since two cycles with the same length can represent two different patterns of
gene activation, an ideal measure of phenotype complexity should take these dif-
ferences into account. Here we quantify these differences in complexity between
different attractors by “stacking” all states of the cycle in a single binary string,
such that a sequence such as 0110 → 1111 cycle would be represented as
01101111. We then estimate the Kolmogorov complexity of the resulting string
using the canonical Lempel-Ziv method [16,30]. The result of this analysis, pre-
sented in Fig. 2d, shows the same trend revealed by looking at cycle length in
Fig. 2c: the number of genotypes mapping to a phenotype is bounded by a func-
tion that decreases exponentially with complexity – a hallmark of simplicity bias,
as discussed by Dingle et al. [16].

Given that both cycle length and Kolmogorov complexity point towards the
presence of simplicity bias in this GP map, as shown by Figs. 2c and d respec-
tively, it could be the case that both measures are simply revealing the bias
towards shorter attractors. This is, however, not the case. Figure 2e shows a
heatmap where every column represents attractors of the same cycle length,
such as the ones grouped in the same subplots in Fig. 2e. In the figure, the
darker shades of red are always in the lower, low-complexity side of the red-
shaded part of every column. Since darker colours represent more genotypes,
this plot indicates that more genotypes map to phenotypes of lower complexity,
even when comparing phenotypes of the same attractor length.

Even though defining the phenotype of a network as its main attractor in its
state space is a practical way to model the behaviour of a GRN, this phenotype
definition discards information about which initial conditions lead to that main
attractor, while also ignoring other attractors present in the GRN state space. In
a case where all biologically relevant initial conditions lead to the same attrac-
tors, such as the yeast cell cycle studied by Li et al. [31], these limitations are not
a problem, but this definition of phenotype is not suited to represent a bistable
system, or a cell that, provided the right initial conditions, might differentiate
into multiple cell types [29].

With that in mind, in the next section we study a fine-grained GP map for
GRNs, defining a phenotype taking into account the attractor corresponding to
every possible initial condition in state space. Or, in biological terms, which gene
expression patterns lead to which cellular behaviours.
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4 Results for Phenotype 2: Multiple Attractors

For this analysis, we define the phenotype of a GRN with N genes as a 2N -long
string of the attractors corresponding to each one of its 2N possible states. For
example, for N = 4, a phenotype would be a string such as AABACBDBCCCDDCCD,
indicating that that states 0000 and 0001 map to attractor A, state 0010 maps
to attractor B, and so on.

Fig. 4. (a) Rank plot for N = 4 GRNs showing a very biased distribution of pheno-
type frequency, for the phenotype defined as the list of attractors. (b) Scatter plot
of phenotype frequency versus phenotype complexity, measured using the Lempel-Ziv
algorithms, showing a strong bias towards simple phenotypes.

Having the phenotype written down as a string also allows us to calculate
its Kolmogorov complexity using the Lempel-Ziv method. We do this by first
iterating over all 3N×N possible genotypes for a given number of genes, and
producing their corresponding strings of attractors. We then translate those
phenotype strings into the shortest binary strings that can accommodate the
range of attractors presented by this GP map. In the case of N = 4, the whole
genotype space produces a total of 8172 different attractors, meaning that the
index corresponding to each attractor can be represented in �log2(8172)� = 13
bits, from 0000000000001 to 1111111101100, and the whole phenotype string
made of the 2N = 16 attractors corresponding to every initial state can be
represented as a string with 16 × 13 = 208 bits, and its complexity can then be
measured using the Lempel-Ziv method.

4.1 Redundancy and Simplicity Bias

As this GP map uses a finer-grained definition of phenotype, it produces a larger
number of phenotypes than the more coarse-grained GP map presented in the
previous section. Figure 4a shows a rank plot of the frequency of the 3.8 × 106

phenotypes produced by this GP map for N = 4 GRNs. This GP map also shows
simplicity bias, as indicated in Fig. 4b. The scatter plot exhibits the characteristic
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triangular shape shown for the previous GP map in Figs. 3c and d, with the most
frequent phenotype being when all initial conditions lead to 0000 as a fixed point,
representing when all genes turn inactive.

5 Robustness and Evolvability

In addition to having a highly biased distribution of neutral network sizes and
a strong bias towards simple outputs, both GP maps studied in this paper show
evidence of a very correlated neutral network landscape. This can be measured
by comparing the frequency fP of a given phenotype P , i.e. the fraction of the
genotype space that maps to P , with the phenotype’s mutational robustness ρP ,
which is defined as the chance that a mutation to one of those genotypes which
map to P produces a phenotype which still maps to P . In other words, it is the
chance that a mutation to one of those phenotypes is a neutral mutation, that
is, a mutation that leads to the same phenotype [1,5,11,12,24,41].

Fig. 5. Robustness and evolvability. Panels (a) and (b) show phenotype frequency
versus phenotype robustness for phenotypes 1 and 2 respectively. In both cases, phe-
notype robustness grows proportionally to the logarithm of phenotype frequency. The
dashed black line represents the random GP map expectation where ρp = fp. Panel
(c) shows a heatmap comparing phenotype robustness and evolvability for phenotype
2, showing that the most robust phenotypes are also the most evolvable ones.

For a random GP map where there is no correlation between neighbour, the
chance of finding P in the neighbourhood of P ’s neutral network should be equal
to the chance of finding P anywhere else in genotype space. Put simply, ρP = fP .
This is indicated by the black dashed lines in Figs. 5a and b. The GP maps stud-
ied here do not show this pattern: instead, phenotype robustness to mutations
scales linearly with the logarithm of phenotype frequency, for both phenotype
definitions. Finally, these GP maps also have a high correlation between pheno-
type robustness and phenotype evolvability, defined as the number of different
phenotypes within one point mutation of a given phenotype [45]. This is illus-
trated for phenotype 2 in Fig. 5c. This behaviour echoes what has been observed
for other GP maps in the literature, which often show correlated landscapes,
where robust phenotypes are also the most evolvable [1,24,39].
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6 Conclusion

In this paper, we have studied the map from a Boolean threshold network to its
dynamic behaviour as a GP map, and showed that this map presents a series of
properties observed in the GP maps literature, such as high levels of redundancy,
a wide distribution of neutral network sizes, high robustness and evolvability, and
most notably a bias towards low-complexity phenotypes.

Although these results are interesting, they only concern the space of GRN
topologies. One could ask if we would obtain the same results if we had instead
fixed the network topology and varied the strength of gene-gene interactions, or
varied topology and interactions – both interesting research directions.

More broadly, the presence of a strong bias towards simplicity raises many
questions about the systems modelled by Boolean threshold networks. GRNs are
behind cell signalling, differentiation, embryonic development, and other com-
plex biological patterns, but BTNs are also the building block of neural network
models in machine learning [35]. Following the analogy between both types of
networks, the evolutionary search for a gene network with a given set of biolog-
ical properties can be compared to the machine learning task of finding a set
of parameters that minimises a cost function. The parallels between evolution
and computation, in particular between evolution and (machine) learning, are
discussed in a large body of literature [43,44,47]. We believe that the study of
GP maps might contribute to this literature. Based on the work presented in
this paper, one could expect that phenomena such as simplicity bias, and even
more biologically relevant properties such as robustness and evolvability, might
have a computational or learning equivalent. Needless to say, the translation of
concepts from one field to another leads to more questions than answers, and
plenty of interesting work ahead.
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48. Zañudo, J.G., Aldana, M., Mart́ınez-Mekler, G.: Boolean threshold networks:
virtues and limitations for biological modeling. In: Information Processing and
Biological Systems, pp. 113–151 (2011)


