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Abstract 

The COVID-19 pandemic has shed light on how the spread of infectious diseases 
worldwide are importantly shaped by both human mobility networks and socio-eco-
nomic factors. However, few studies look at how both socio-economic conditions and 
the complex network properties of human mobility patterns interact, and how they 
influence outbreaks together. We introduce a novel methodology, called the Infection 
Delay Model, to calculate how the arrival time of an infection varies geographically, 
considering both effective distance-based metrics and differences in regions’ capac-
ity to isolate—a feature associated with socio-economic inequalities. To illustrate an 
application of the Infection Delay Model, this paper integrates household travel survey 
data with cell phone mobility data from the São Paulo metropolitan region to assess 
the effectiveness of lockdowns to slow the spread of COVID-19. Rather than operating 
under the assumption that the next pandemic will begin in the same region as the last, 
the model estimates infection delays under every possible outbreak scenario, allowing 
for generalizable insights into the effectiveness of interventions to delay a region’s first 
case. The model sheds light on how the effectiveness of lockdowns to slow the spread 
of disease is influenced by the interaction of mobility networks and socio-economic 
levels. We find that a negative relationship emerges between network centrality and 
the infection delay after a lockdown, irrespective of income. Furthermore, for regions 
across all income and centrality levels, outbreaks starting in less central locations were 
more effectively slowed by a lockdown. Using the Infection Delay Model, this paper 
identifies and quantifies a new dimension of disease risk faced by those most central in 
a mobility network.

Keywords: Human mobility, Socio-economic inequality, Epidemic intervention 
effectiveness, Spatial analysis

Introduction
Since the start of the COVID-19 pandemic, an active literature has evolved to study the 
spread and dynamics of the disease from mobility networks (Coelho et al. 2020; Peixoto 
et al. 2020; Chang et al. 2020; Levin et al. 2021) or socio-spatial perspectives (Lee et al. 
2021; Li et  al. 2021; Cordes and Castro 2020). However, very few studies look at how 
both socio-economic conditions and network properties interact, and how they influ-
ence outbreaks together (Chang et al. 2020; Nande et al. 2021). Chang et al. (2020) create 
a mobility network from cell phone mobility data and model the spread of COVID-19, 
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identifying the importance of ‘superspreader’ points and higher infection rates among 
disadvantaged racial and socio-demographic groups. Nande et  al. (2021) explore how 
evictions influence the spread of COVID-19 in various simulation scenarios, consider-
ing different policy responses and highly local contact networks. Further, while extensive 
work has been done to model the spread of the virus and non-pharmaceutical interven-
tion effectiveness in terms of cases, hospitalizations, and deaths (Li et al. 2021; Cordes 
and Castro 2020; Flaxman et al. 2020; Oraby et al. 2021; Oka et al. 2021; Meo et al. 2020) 
there is a lack of emphasis on the timing of case spread, and how interventions can delay 
a region’s first infection. Given the spatio-temporal granularity of cell phone mobility 
data capturing responses to lockdown policies, it is now possible to develop generalized, 
preventative methodologies which seek to further our understanding of disease vulner-
ability, and better prepare for novel outbreaks or variants.

This paper develops the Infection Delay Model (IDM), a novel effective distance-based 
methodology that can be used for assessing how lockdowns can delay a region’s first case 
and their intersection with socio-economic inequalities. The IDM captures the difference 
between disease arrival times with and without a lockdown, using a novel application of 
cell  phone mobility data for effective distance research. To develop a forward-looking 
understanding of the impacts of interventions on the timing of disease spread, a use-case 
of the IDM is presented which considers the potential variability of future outbreak sce-
narios. Drawing from recent studies of network-driven contagion phenomena (Brock-
mann and Helbing 2014; Iannelli et al. 2017; Balcan et al. 2009), we simulate epidemics 
from every node in the transport network. By connecting those simulations with socio-
economic data, generalizable insights are uncovered which can be applicable beyond the 
specific spreading patterns observed during COVID-19.

This paper uses the Metropolitan Region of São Paulo (MRSP) as a case study to apply 
the IDM. Given its unique position as an area of early disease introduction and high 
intrastate transmission, COVID-19 studies in the MRSP can help with preparation for 
future variants of COVID-19 or other pandemics (Coelho et  al. 2020; Candido et  al. 
2020).

Background
Network‑based analyses of COVID‑19

One branch of literature on COVID-19 has focused on mobility networks to model the 
spread of the disease and assess the risks of cases and deaths. The data sources used to 
generate such networks range from domestic and international flight records (Coelho 
et al. 2020; Kuo and Chiu 2021), to cell phone mobility records and geo-located visits to 
places of interest (Peixoto et al. 2020; Chang et al. 2020; Nande et al. 2021; Ferreira et al. 
2021). The varying spatio-temporal granularity of the data sources used in these analy-
ses have led to diverse outputs to identify regions at risk and explore how non-pharma-
ceutical interventions (NPIs) such as lockdowns impact mobility and vulnerability, but 
also how that impact might be different across wealthier or poorer regions (Gozzi et al. 
2021).

This area of literature uses transport flows to construct aggregated networks of popu-
lation movement. Various methods have been implemented to study COVID-19 risks 
on these mobility networks. Effective distance-based studies calculate the ‘distance’ 
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between two regions based on the degree of mobility flows between them—more con-
nected regions are effectively ‘closer’ (Coelho et  al. 2020). The effective distance of a 
region from an outbreak location has been shown to be predictive of infection arrival 
times (Brockmann and Helbing 2014; Iannelli et al. 2017). Other studies build compart-
mental models on top of the mobility networks, calibrated to regional epidemic trajecto-
ries, and use epidemiological parameters and outbreak locations to simulate the course 
of an epidemic (Chang et al. 2020; Balcan et al. 2009; Peixoto et al. 2020; Nande et al. 
2021). As greater mobility and person-to-person contact is associated with transmission, 
epidemic simulations can be run on mobility networks with adjusted levels of mobility 
or contact patterns to explore the impacts of real or hypothetical interventions on health 
outcomes (Levin et al. 2021; Nande et al. 2021).

Socio‑spatial analyses of COVID‑19

A separate branch of literature on COVID-19 has focussed on disease vulnerability and 
its intersection with existing socio-spatial inequalities. The range of analyses includes 
studies on how socio-economic levels are associated with differences in terms of cases, 
hospitalizations, and deaths (Li et al. 2021; Cordes and Castro 2020), health care facility 
access (Pereira et al. 2021; Tao et al. 2020), and inequalities in NPI adherence (Li et al. 
2021; Lee et  al. 2021; Jay et  al. 2020; Heroy et  al. 2022). It is worth noting that some 
of these analyses also study the impact of mobility restrictions, by either incorporating 
them as a proxy for the intensity of the economic downturn associated with the lock-
down (Bonaccorsi et al. 2020), or identifying likely determinants of spatial variations of 
reductions in mobility (Gauvin et al. 2021). Overall, these spatial analyses often seek to 
uncover how variables such as race and income relate to COVID-19 risks, to identify 
how existing inequalities are being compounded by the ongoing pandemic.

In an analysis of hospitalization and deaths in São Paulo, it was found that black and 
pardo Brazilians were more likely to be hospitalized and die of COVID-19 (Li et  al. 
2021). Similarly, an analysis of clusters and contextual factors of COVID-19 in New 
York City found that regions with larger black populations without health insurance had 
higher positive testing rates (Cordes and Castro 2020). Cell phone mobility data has also 
been used to study the interaction of lockdown adherence and socio-economic inequal-
ities. Conceptualizing mobility restrictions as a luxury not everyone can afford, it has 
been found that more vulnerable individuals were less able to reduce their mobility—
potentially due to a lower probability of furlough or teleworking opportunities (Lee et al. 
2021; Li et al. 2021).

Contributions

The first contribution of this paper is an integrated analysis of how the complex network 
properties of mobility patterns interact with socio-economic characteristics to pro-
duce disease risk. While the socio-spatial branch of literature has consistently identified 
intersections between socio-economic vulnerability and disease burdens (Li et al. 2021), 
current network-based studies either use socio-economic data to contextualize network-
based results (Coelho et al. 2020; Gauvin et al. 2021), or include it to identify relation-
ships between mobility reductions and socio-economic vulnerability (Pullano et al. 2020; 
Valdano et al. 2021; Gozzi et al. 2021). There is a lack of investigation into the interaction 
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between network properties and socio-economic factors, and how they jointly drive the 
distribution of disease risk. It cannot be assumed that features such as network central-
ity and income are proxies for each other, justifying an investigation which explicitly 
examines both.

The second contribution of this study is the introduction of a new method that esti-
mates the extent to which lockdown measures can slow down the spread of diseases 
while taking into account the spatial and temporal heterogeneity of disease spread in a 
network science approach. Existing network-based and socio-spatial research on cases, 
hospitalizations, and deaths fail to measure a crucial goal of early lockdowns, namely 
delaying the time until a region’s first case. Delaying disease onset with early interven-
tions can buy time for health systems to increase hospital and intensive care capacity, 
and establish rapid testing sites (Rocha et al. 2021). To investigate this dimension of dis-
ease risk, we introduce the Infection Delay Model, an effective distance-based method of 
calculating disease arrival times under baseline and lockdown mobility scenarios. Cur-
rent literature which explores rankings of disease arrivals using effective distances does 
so while assuming a single known outbreak location (Brockmann and Helbing 2014; 
Iannelli et  al. 2017), or including a small subset of potential outbreak locations (Coe-
lho et al. 2020). These studies also overlook how rankings of disease arrivals are shaped 
by socio-economic inequalities. Given recent literature on the outsized influence of the 
outbreak region on the trajectory of a communicable disease (Schlosser and Brockmann 
2021), this study simulates outbreaks beginning in every region of the MRSP, to allow for 
generalizable findings that do not assume that the next outbreak will begin in the same 
region as the last.

Methodology
Data

Cell phone mobility data

Through an agreement with InLoco (Incognia 2020), a Brazilian cell phone analyt-
ics company now known as Incognia, this paper had access to daily isolation levels 
for MRSP from March 1, 2020 to April 19, 2020. These data come spatially aggre-
gated on a hexagonal grid using the H3 index at resolution 8 (Brodsky 2018). The 
data set contains 2893 hexagonal cells of roughly 740 m2 across the MRSP, of which 
2599 had suitable time frames and auxiliary data after interpolation to be used in the 
analysis. The hexagonal isolation data is openly available in a data repository (see 
Availability of Data and Materials section). InLoco/Incognia gathers data by partner-
ing with mobile phone applications, and uses software development kits to harvest 
location data while individuals are using partnered apps (Peixoto et al. 2020). This 
form of location gathering provides precise geo-coordinates, which are anonymized 
and aggregated to develop the social isolation indices. For a given hexagon cell, the 
proportion of individuals who reside in the cell and stay within it on a given day 
is recorded. This proportional value is used as a proxy for social isolation (Li et al. 
2021), recording the extent to which individuals travel outside their residence area. 
Higher or lower social isolation values indicate that fewer or more individuals are 
leaving their residence area, respectively (Ferreira et  al. 2021). The distribution of 
social isolation hexagon cells is presented in Fig. 1. The same data set was used in 
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Li et al. (2021), showing that lower income individuals were less able to reduce their 
mobility after São Paulo’s lockdown, justifying our use of the cell phone data as cap-
turing income-related mobility inequalities. The uneven coverage of the MRSP hex-
agon cells is a feature of the data set provided by InLoco/Incognia, discussed in the 
limitations section.

Travel survey data

The travel survey data for the MRSP were gathered from the 2017 MRSP household 
travel survey, conducted by the São Paulo Metropolitan Transportation Department 
between June 2017 and October 2018 (METRÔ-SP 2018). The original data set is a 
table of survey responses regarding the total daily trips of 86,318 individuals who 
reside in the MRSP. On average, each individual reports 2.12 daily journeys, leading 
to a total of 182,994 trip reports (METRÔ-SP 2018). Key information for the reports 
are the journey origin and destination, along with the travel time. The interviews 
were conducted across 39 municipalities within the MRSP, divided into 510 research 
zones for the purposes of the survey. Of all the research zones, 66% lie within the 
main municipality in the MRSP, São Paulo. The survey was designed to be statisti-
cally representative across the MRSP, and includes journey and population weights 
to scale responses by their frequency in the true population. From these weights, the 
total 2017 mobility flows between travel survey zones and 2017 estimates of popula-
tions were calculated. Population levels in 2020 were estimated by determining the 
geometric growth rate from 2010 and 2019 population totals, and scaling the 2017 
populations to obtain population estimates per zone (Instituto Brasileiro de Geogra-
fia e Estatística 2010, 2019). Population counts for the commuting areas are neces-
sary as inputs to the network-based compartmental epidemiological model used to 
simulate epidemics.

Fig. 1 Geographic distribution of all hexagonal cells in the Metropolitan Region of São Paulo for which daily 
isolation levels are available from the mobile analytics company InLoco/Incognia (Incognia 2020). Shows 
variation in populations across the Metropolitan Region of São Paulo
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Census data

This study uses socio-economic data from the official 2010 Brazilian Census, focused on 
the census tracts within the MRSP (Instituto Brasileiro de Geografia e Estatística 2010; 
Pereira and Gonçalves 2019). Within the state of São Paulo, there are 68,296 tracts, with 
data included on the total population, racial aggregates, average income per capita (Bra-
zilian Real per calendar month), functioning water networks, and other relevant socio-
economic features. The census tracts within São Paulo state cover a larger area than 
both the cell phone mobility hexagon cells and travel survey zones, which are primarily 
focused on the MRSP. The population data from the the MRSP travel survey is more up 
to date than the 2010 census, therefore it is used in favour of the census data population 
totals. The census data remains useful for calculating regional income per capita aver-
ages, which are interpolated from census tracts into the hexagon cells.

Interpolating data to hexagon‑level

While the social isolation hexagon cells provide spatially and temporally granular infor-
mation on the daily proportion of residents leaving a given area, information on which 
population subgroups are included in each hexagon cell remain unknown. This problem 
is shared across the growing body of literature using cell phone mobility data for pub-
lic health purposes, where anonymity measures by cell  phone data providers obscure 
information on the sample (Grantz et al. 2020). While fundamental selection biases in 
the mobile phone data are a persistent issue, discussed in the limitations section, tradi-
tional data sources can be leveraged to generate population estimates within the hexa-
gons (Aleta et al. 2020).

The census tracts and travel survey zones are constructed of varying spatial structures 
which must be mapped to the social isolation hexagon cells. This process, known as spa-
tial interpolation, is used in geospatial studies to estimate values in unknown area units 
using values in known geographic units (Comber and Zeng 2019). The spatial inter-
polation method used in this analysis is known as aerial weighting, which integrates 
socio-economic estimates based on proportional overlap (Comber and Zeng 2019). This 
method depends on the assumption of homogeneously distributed characteristics within 
census tracts and travel survey zones, but benefits from transparency and simplicity rel-
ative to interpolation methods which rely on auxiliary information (Comber and Zeng 
2019). Each hexagon cell’s overlap with census tracts and travel survey zones was deter-
mined relative to their total areas. This proportional overlap area was used to generate 
a weighted allocation for income and population levels. For example, if a hexagon cell 
covered 50% of a travel survey zone with a population of 20, the hexagon cell would be 
assigned 10 individuals. Figure  1 geographically displays the interpolated populations 
across the hexagon cells in the MRSP, and Fig. 2 and Table 1 display the distribution of 
incomes.

To interpolate the 2017 travel survey network to the hexagonal cells, the homogeneity 
assumptions of aerial weighting are extended to mobility flows between travel survey 
zones (Jang and Yao 2011). It is assumed that a hexagon cell overlapping with a given 
origin zone has a proportional quantity of outflow to all its targets. Similarly, hexagon 
cells overlapping with a given destination zone receive inflow from all relevant origin 
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zones proportional to their intersection with that destination zone. An illustration of the 
travel flow interpolation to hexagon cells is provided in Fig. 3.

Based on the interpolated mobility network, the in-degree centrality of each hexagon 
cell is calculated. In-degree centrality is the number of edges that directly flow into a 
cell, representing the diversity of inflow connections—associated with a region’s time to 
infection (Hunter et al. 2020; Christley et al. 2005). The weighted in-degree (total trav-
ellers in) and weighted out-degree (total travellers out) are also highly correlated with 
the in-degree, and have been shown to influence the spread of disease (Francetic and 
Munford 2021). Other centrality measures to determine a node’s level of influence in a 

0

100

200

300

300 1000 3000 10000 30000
Average Monthly Income (BRL, log−scale)

C
ou

nt
Fig. 2 Distribution of average income per capita (Brazilian Real per month) across hexagon cells

Table 1 Summary statistics of average income per capita (Brazilian Real per month) across hexagon 
cells

Monthly 
income (BRL/
capita)

Mean 2172.079

Std 2318.79

Min 0.00

25% 1069.62

50% 1418.27

75% 2187.37

Max 28471.98

Fig. 3 Travel survey data interpolation strategy from travel zones to hexagon cells. Outflow and inflow 
are proportional to a hexagon cell’s overlap with a travel zone. To estimate travel patterns within a given 
hexagon, known inflow and outflow between travels zones A and B are proportionally allocated based on 
the overlap. For example, Hexagon X overlaps with 12% of Region A, and therefore 12% of Region A’s outflow 
is assigned to Hexagon X. Hexagon Y overlaps with 25% of Region B, and therefore 25% of the 12% outflow is 
assigned to Hexagon Y as inflow 
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network include betweenness centrality, which measures the number of shortest paths 
that pass through a given node, and closeness centrality, which is the inverse of the geo-
desic distance from a given node to all others (Lü et al. 2016). Other, more recent meas-
ures focus on community structures and distinguish inter versus intra-community links 
when considering centrality (Rajeh et al. 2022). This includes the neighbourhood-based 
bridge node centrality, which measures how a node’s neighbours will belong to other 
network components if it is removed (Meghanathan 2021). In-degree is chosen in this 
analysis because the infection delay model focuses solely on initial disease arrivals, and 
in-degree centrality isolates these inward flows in a simple and interpretable measure-
ment. The distribution of in-degree centrality in the hexagon-interpolated mobility net-
work is presented in Fig. 4 and Table 2.

Infection delay model

This section will discuss in detail the methodology of the proposed Infection Delay 
Model. To provide an overview, the inputs to the Infection Delay Model are the effec-
tive distances from all pairs of hexagon cells, calculated under baseline and interven-
tion mobility scenarios—the baseline being the scenario with no mobility restrictions, 
i.e. no form of lockdown. These effective distances are translated into two sets of infec-
tion arrival times, whose differences represent the ‘infection delay’ of an intervention. 
For a given outbreak location, the infection delay algorithm first determines how much 
time would be ‘added’ until every region’s first case if the outbreak location implemented 
a lockdown on the first day. Assuming a lockdown is not immediately implemented at 
the outbreak location, we simulate the unmitigated spread of the disease using a SIR 
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Fig. 4 Distribution of in-degree centrality for hexagon cells in the interpolated mobility network

Table 2 Summary statistics of in-degree centrality for hexagon cells in the interpolated mobility 
network

In‑degree 
centrality

Mean 572.4

Std 268.6

Min 83.0

25% 383.0

50% 544.0

75% 719.0

Max 1829.0
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model and calculate the infection delay of a lockdown intervention at every subsequent 
day based on the currently infected regions. This produces a time series plot for every 
region, known as its infection delay curve, showing the infection delay values over time 
for an outbreak beginning at a known region. While this provides estimates of the ‘time 
added’ to a region’s first case from a known location, we calculate and characterize infec-
tion delay curves for every region under every possible outbreak scenario to understand 
general trends.

Calculating effective distance

To calculate the effective distances for the hexagon-scaled mobility network, this analy-
sis uses the ‘dominant path’ effective distance, a metric used in numerous disease arrival 
time analyses (Iannelli et  al. 2017; Brockmann and Helbing 2014; Coelho et  al. 2020; 
Gautreau et al. 2008), translated into Python by Iannelli et al. (2017). Measures of the 
dominant path effective distance focus solely on the most probable path of transmission 
from hexagon i to j. To calculate this value, for every connected origin i and destina-
tion j in the network, we calculate the transition rate as the proportion of total travellers 
beginning in hexagon i who arrive in hexagon j, denoted as 0 ≤ Pij ≤ 1 (Brockmann and 
Helbing 2014). The effective distance between hexagons i and j is calculated as:

which is used as an edge weight for every pair of i, j hexagons, or nodes in the mobility 
network (Brockmann and Helbing 2014). These edge weights, greater than or equal to 
one, are used in a weighted shortest path analysis to determine the dominant path effec-
tive distance between every pair of hexagon cells. With dij calculated for all edges in the 
network, the dominant path between i and j is chosen as the path which minimizes the 
sum of effective distance edge weights between them. Finally, the dominant path effec-
tive distance between two hexagons ( Dij ) is calculated as the sum of the effective dis-
tances along the determined shortest path. This basic dominant path effective distance 
can be used to detect rankings of arrival times for a given outbreak location (Brockmann 
and Helbing 2014).

The traditional dominant path effective distance model is solely based on the mobility 
network, captured by Pij , and does not have parameters which can incorporate chang-
ing epidemiological parameters or rates of mobility reduction in the network. To add 
epidemiological and mobility-based parameters, useful for a comparative analysis, the 
effective distance formula is altered to

shown in Iannelli et  al. (2017), where β and µ are the infection and recovery rate. 
The mobility compound parameter κ , representing the proportion of the cir-
culating population, is altered to incorporate mobility reductions, given by 
(1.0−mobility reduction/100.0)× κ0 , where the mobility reduction goes from 0 to 100% . 
In this compound parameter, κ0 is the mobility rate, chosen to be 10%, which also ensures 
the logarithm is positive after the subtraction of � , the Euler-Mascheroni constant (Ian-
nelli et al. 2017). As κ0 is constant between the baseline and intervention scenarios, its 

(1)dij = 1− ln(Pij),

(2)dij = ln
β − µ

κ
− � − ln(Pij),
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value does not impact the infection delay value when the differences in arrival times are 
calculated between the two. The reproductive number R0 is chosen to be 2.9, based on 
an epidemiological characterisation of the MRSP early in the pandemic (de Souza et al. 
2020). The infectious period is chosen to be 9.2 from a mathematical analysis of COVID-
19 in Brazil (Pinto Neto et  al. 2021). The infection rate is thus R0/infectious period = 
2.9/9.2, and the recovery rate is given by 1/infectious period=1/9.2. It is important to 
note that the transition rate Pij calculation is unaltered from the traditional model. As 
the mobility compound parameter κ rises, dij decreases, indicating that i and j are effec-
tively closer. Similarly to the traditional model, for every potential outbreak and target 
hexagon cell in the network, the dominant path effective distance is generated from the 
weighted shortest path analysis, generating a 2599× 2599 matrix of effective distances. 
This method is able to calculate effective distances between hexagons irrespective of 
whether they are directly or indirectly connected.

Two 2599× 2599 matrices of effective distances are calculated for every potential ori-
gin i and destination j, under the following mobility flow scenarios: 

1. No mobility reduction (baseline scenario).
2. Reduction in mobility based on hexagonal isolation changes.

The first scenario assumes no interventions, where arrival times are calculated using 
the baseline travel pattern information ( mobility reduction = 0 ). The second scenario 
assumes that hexagon cells reduce their mobility by the same amount as observed during 
the first wave of the pandemic, through leveraging the cell phone social isolation infor-
mation. To determine the extent of the mobility reduction for each region, the marginal 
change in social isolation from pre-lockdown to post-lockdown is calculated. The initial 
isolation value for each hexagon is calculated as the mean across March 1 to March 15, 
the two weeks leading up to the MRSP’s lockdown (Siciliano et al. 2020). The lockdown 
isolation value for each hexagon is calculated as mean from March 16 to March 30 2020, 
capturing the initial regional responses to lockdown measures. After determining the 
marginal change in real isolation for each origin hexagon, the effective distance calcula-
tion becomes:

then used to calculate the dominant path effective distance between all i, j nodes.
This representation of effective distance is used to approximate how rapidly a disease 

would spread from hexagon i to j given the observed change in pandemic isolation for 
region i. The adjustment of the compound κ term to κmobility reduction

i  is a novel contri-
bution of the study, allowing the analysis to capture heterogeneous changes in mobility 
based on cell phone mobility data, known to intersect with socio-economic vulnerability 
in the MRSP (Li et al. 2021).

Infection delay of intervention

To generate an estimation of arrival times based on the effective distances, this paper 
employs the methods used in Iannelli et  al. (2017), dividing the effective distance by 

(3)dinterventionij = ln

(

β − µ

κ
mobility reduction
i

− �

)

− ln (Pij)



Page 11 of 22Yücel et al. Applied Network Science            (2023) 8:16  

the effective velocity, defined as VEF
≈ β − µ , where β is the infection rate and µ is the 

recovery rate. The arrival time for a disease to arrive from location i to location j, includ-
ing both the dominant path effective distance Dij (sum of shortest effective distance path 
from i to j) and velocity is thus:

Having generated the arrival times under both scenarios for every i, j combination, the 
infection delay by an intervention for an introductory case arriving from origin i to des-
tination j is calculated as:

The infection delay ( IDij ) values are calculated for every pair of hexagon cells, generating 
a 2599× 2599 matrix where each i, j value represents the additional time to a case arriv-
ing from i to j given a mobility reduction proportional to i’s real mobility change.

Using known changes in mobility to understand intervention effectiveness takes into 
account the inequality in regional responses, and allows intervention scenarios to mimic 
the real capacities of hexagon cells to isolate and adhere to policy guidelines. Having the 
arrival times in Tintervention

ij  reflecting the real mobility changes allows for an infection 
delay analysis which better captures the lived experience of each of the 2599 hexagon 
cells in determining the relative benefits from early interventions.

From the MRSP’s first case of COVID-19 to its widespread presence, this analysis 
determines the time ‘added’ until a region’s first case (infection delay) by an interven-
tion at every hypothetical time t, assuming no intervention before t. At time t = 0 , only 
the initial outbreak location i0 has the disease, and each hexagon’s infection delay by 
an intervention is ID0

ij0
 , representing the change in intervention arrival time relative to 

the baseline arrival time from i0 to j. For every t ≥ 1 , each hexagon cell’s infection delay 
value is determined based on the currently infected regions. To calculate this value, for 
every hexagon cell j and discrete time step t, the following algorithm is developed: 

1. Determine all infected hexagon cells at time t.
2. Determine the infection delay of an intervention across all currently infected hexa-

gon cells relative to destination j.
3. Select the minimum infection delay value.

Following this algorithm, the IDM generates a time-series infection delay curve. An 
example plot is presented in Fig. 5, for a given hexagon A and outbreak location B. There 
are two primary factors that interact to create the structure of the infection delay curve: 
(1) the effective distance of infected hexagon cells to the hexagon cell of interest; (2) the 
degree of mobility reduction of infected hexagon cells. The outbreaks used in this analy-
sis will be simulations calculated from a compartmental epidemiological model.

The example in Fig. 5 shows how the IDM can be used to estimate the time ‘added’ 
to all regions’ first cases in a scenario with a specific outbreak location B, known a pri-
ori. To generalize the findings of the infection delay analysis to outbreak scenarios other 
than those observed during COVID-19, epidemic outbreaks are simulated beginning 

(4)Tij =
Dij

V EF

(5)IDij = Tintervention
ij − Tbaseline

ij
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in each of the 2599 hexagons in the MRSP. This paper uses a commuter susceptible-
infected-removed (SIR) model to simulate the spread of the disease, where members of 
the population progress from susceptible, to infected, to removed ‘compartments’ (Sali-
mipour et  al. 2023). These models have been used in numerous studies with mobility 
networks to explore disease risk in relation to COVID-19 (Chang et al. 2020; Goel et al. 
2021; Ajbar et al. 2021; Salimipour et al. 2023). This paper focuses on the initial outbreak 
of the disease in a short time interval, where SIR models have been shown as an effective 
predictor despite difficulty forecasting epidemic spread in the longer term (Moein et al. 
2021). This paper employs the commuter-oriented susceptible-infected-removed (SIR) 
model used in Schlosser et  al. (2021), on GitHub as EpiCommute. While the original 
model is used to simulate the spread of COVID-19 in 401 German counties, this analy-
sis uses the 2599 social isolation hexagons, providing their interpolated populations and 
mobility flows.

For each outbreak scenario, the calculated arrival times are used in conjunction with 
the IDM to generate infection delay curves for every hexagon cell. The end result is 2598 
infection delay curves for every hexagon (excluding its own outbreak), each one encap-
sulating the infection delay to the first case by an intervention at every time t.

Median infection delay values

To extract key information from each hexagon cell’s 2598 infection delay curves, the 
median value taken over the first 10 days is used to summarize the curve describing 
infection delay from an intervention. The first 10 days are chosen as they best exemplify 
the differences in infection delays across early outbreak scenarios, after which the curves 
begin to converge. Figure 6 displays the pipeline for calculating median infection delay 
curves for each hexagon cell. Rather than assigning every infection delay curve an equal 

Fig. 5 Hypothetical infection delay curve for region-at-risk A caused by a lockdown, following an outbreak 
beginning in region B. At time t = 0 , location B would be the only infected region—as the outbreak location. 
At this time, a lockdown would allow region A to gain approximately 6.6 days (y-axis) until its first case of 
COVID-19. If the disease were to spread unmitigated until time t = 30 days, a lockdown would provide a gain 
of only 2 days before region A’s first case. At the 40-day mark following an outbreak in region B, without any 
intervention, region A would already be infected. Thus, a lockdown intervention at this point would have no 
ability to delay the onset of infection, with a y-axis value of 0
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weight and assuming that each scenario is equally likely, each curve is weighted by the 
in-degree centrality of its outbreak location, thus resulting in a weighted median value of 
the infection delay. In the first set of results, each hexagon cell is divided into centrality 
and income quartiles, and their relationships to infection delays are explored. A one-
way ANOVA test is performed on the infection delay values to determine whether the 
differences are statistically significant. In the second set of results, each hexagon cell’s 
2598 infection delay curves are divided into two groups based on the in-degree centrality 
of the outbreak location. A student’s t-test is performed on the two groups of infection 
delay values to test whether the differences are statistically significant.

Results
Weighted median infection delay curve

The relationship between greater centrality and lower infection delay values is displayed 
in Table 3 and Fig. 7. Within every income quartile, greater centrality is associated with 
a lower median infection delay value. These differences between infection delay values 
across centrality quartiles, controlling for income quartile, are statistically significant at 
the p < 0.01 level based on the one-way ANOVA test. Figure 8 shows the geographic 
distribution of weighted median infection delay values.

Figure 9 displays the distribution of infection delay curves across income groups, con-
trolling for their levels of centrality. Observing the hexagon cells’ infection delays from 
Fig. 9, this analysis finds no discernable trend across income groups. The median infec-
tion delay values of hexagon cells in the bottom 25% of centrality are between 7.5 and 
8 days. Hexagon cells in the highest centrality quartile all have median infection delay 
values between 6 and 6.5 days.

Division by outbreak location centrality

Each hexagon cell’s infection delay value is subsequently calculated and shown when 
the outbreak location is in the bottom versus top 50% of centrality. For every hexagon 
cell, this creates two infection delay values, shown side-by-side in Figs.  10 and 11. 
We see that greater centrality is associated with lower infection delays, irrespective 
of income, and no clear pattern across income groups is observed when controlling 

Fig. 6 Illustrative example of infection delay median pipeline for a single hexagon cell, using only 10 
outbreaks for visualisation (real analysis uses 2598 outbreak scenarios). From left to right: a the infection delay 
curves are calculated for each outbreak location; b the median of those curves are taken at every time t to 
create a general characterisation of lockdown effectiveness in the region-at-risk
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for centrality—similarly to Figs.  7 and 9. The results also show that irrespective of 
the income and centrality grouping, outbreaks beginning in hexagon cells of lower 
centrality lead to greater infection delays of lockdowns. The student’s t-test indicates 

Fig. 7 Weighted median infection delay values across in-degree centrality quartiles, while controlling for 
income

Table 3 Weighted median infection delay values across income and in-degree quartiles

Median income per capita (Brazilian Real per Month) and in-degree centrality within each quartile subgroup is shown. 
The differences in weighted median infection delay values across in-degree centrality quartiles are statistically significant 
( p < 0.01)

Income quartile (median BRL) In‑degree quartile (median in‑degree) Weighted 
median 
infection delay

1 (937.33) 1 (268) 7.71

2 (452) 7.23

3 (625) 6.86

4 (813) 6.34

2 (1212.41) 1 (268) 7.70

2 (468) 7.23

3 (623) 6.86

4 (791) 6.41

3 (1712.48) 1 (268) 7.70

2 (470) 7.22

3 (629) 6.87

4 (847) 6.46

4 (3483.72) 1 (325) 7.70

2 (469) 7.31

3 (635) 6.91

4 (944) 6.38
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a statistically significant ( p < 0.01 ) difference between infection delay values depend-
ing on whether the outbreak location’s centrality is below of above the median.

Discussion
This analysis has sought to uncover how the socio-economic and network characteris-
tics of a region relate to the delay of its first case from an early intervention. The results 
of the Infection Delay Model indicate that the centrality of a region, independent of its 
income level, plays the largest role in determining how an early intervention will delay 
their first infection. There is no discernable relationship between income levels and the 
ability of a lockdown to slow the arrival of disease when controlling for centrality. This 
is surprising, considering that previous research using the same mobility dataset has 

Fig. 8 Geographic distribution of weighted median infection delay values over the first ten days of an 
outbreak

Fig. 9 Weighted median infection delay values across income quartiles, while controlling for in-degree 
centrality
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shown that lower income individuals were less able to reduce their mobility after São 
Paulo’s lockdown (Li et al. 2021). Although previous studies have shown that vulnerable 
communities with lower isolation levels have higher infection rates of COVID-19 (Lee 
et al. 2021; Li et al. 2021; Cordes and Castro 2020), our results suggest that the influence 
of socio-economic and isolation inequalities in determining disease arrival is overrid-
den by the outsized influence of centrality in the network. As an effective distance-based 

Fig. 10 Un-weighted infection delay values across in-degree centrality quartiles, while controlling for 
income. Each region’s infection delay values are calculated and displayed for outbreak scenarios in the upper 
and lower 50% of in-degree centrality

Fig. 11 Un-weighted infection delay values across income quartiles, while controlling for in-degree 
centrality. Each region’s infection delay values are calculated and displayed for outbreak scenarios in the 
upper and lower 50% of in-degree centrality
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analysis, more central regions tend, on average, to be ‘closer’ to infected regions. This 
proximity reduces the potential infection delay of a lockdown, with an opposite mecha-
nism in play for less central regions.

A potential reason why income does not have a clear impact on infection delay values, 
when controlling for centrality, is that socio-economic dynamics can be already embed-
ded in the network topology. In Brazil, these dynamics have been shown to be at play, 
as lower-income regions face larger average commuting times (Pereira and Schwanen 
2015)—a factor which would already be embedded in the commuter travel network used 
in this analysis. This study is not concluding that income does not have an effect on dis-
ease spread—priorly shown to do so in our region of study—but that in the IDM, income 
effects that are not already entangled with the network topology do not influence the 
delay to regions’ first cases caused by an intervention.

The literature produced during the COVID-19 pandemic has thoroughly highlighted 
the importance of socio-economic factors and their relationship to disease risk, rational-
izing their use as more than a passive add-on to network-based results. The growing pri-
oritization of socio-economic inequalities as a driving force of disease risk is exemplified 
in studies such as Nande et al. (2021), who study how eviction rates in Philadelphia have 
a measurable impact on the spread of COVID-19. The Infection Delay Model reflects 
socio-economic inequalities in the MRSP by incorporating real-life mobility reduc-
tions—known to be weaker in vulnerable areas (Li et  al. 2021)—as a core component 
in the effective distance network analysis. Income is then used as a key axis to explore 
infection delays, found to be overpowered by a region’s centrality.

Rather than contradicting existing literature on the health burden inequalities asso-
ciated with socio-economic status, this paper uncovers an unexplored perspective on 
pandemic preparedness. The emphasis of previous literature on case, death, and hos-
pitalization counts illuminate how vulnerable groups are most at risk during the course 
of an outbreak (Li et al. 2021; Rocha et al. 2021; Jay et al. 2020; Lee et al. 2021; Cordes 
and Castro 2020; Pereira et al. 2021; Coelho et al. 2020). This paper targets a different, 
intervention-focused question: How much time can be gained to a region’s first case from 
an early lockdown? It cannot be assumed that the same mechanisms leading to greater 
disease risk during an outbreak lead to reduced intervention effectiveness prior to an 
outbreak. Our results, in conjunction with the established literature on socio-economic 
vulnerability and COVID-19, illuminate an additional burden faced by low-income, cen-
trally located regions.

A major contribution of this study is its generalized, forward-looking characterisa-
tion of intervention effectiveness. Rather than relying on a single set of initial conditions 
when modelling a disease, or using a subset of transport hubs as outbreak locations, this 
analysis incorporates all possible outbreak locations when assessing how early inter-
ventions lead to infection delays. This allows for broad understandings of intervention 
effectiveness whose validity is not reliant on the next epidemic beginning in the same 
location as the last. This addresses the recently explored importance of outbreak loca-
tions on disease trajectories, providing generalizable insights for future disease prepar-
edness (Schlosser et al. 2021). We are able to use the abundance of scenarios to generate 
weighted median infection delay values (Figs.  7, 9), emphasizing the dominant role of 
centrality. Further, we can divide outbreak locations into low and high centrality groups 
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(Figs.  10, 11), and show that the infection delays of interventions vary based on the 
centrality of the outbreak location. We see that irrespective of the income or centrality 
quartile of recipient regions, outbreaks beginning in less central regions tend to lead to 
greater slowdowns.

Conclusion

Research into the effectiveness of government interventions to slow disease spread is 
essential, as the disaster resulting from the COVID-19 pandemic and its emerging new 
variants continues globally. The novel Infection Delay Model proposed in this study 
provides a method of capturing how mobility reductions can slow the spread of an out-
break while considering the network patterns of mobility flows, an important element 
of intervention effectiveness. The data-linkage approach, interpolating travel behaviour 
and socio-economic data, allowed for insights into the social context of regions and how 
interventions can delay a region’s first case. The unique integration of cell phone mobil-
ity data into the effective distance metrics has captured heterogeneous changes in iso-
lation, found in prior literature to intersect with socio-economic inequalities (Li et  al. 
2021; Lee et al. 2021). While this analysis is focused on Brazil, a region where income, 
health, and transport inequalities are stark (Malta et al. 2020), the presented approach 
can be applied in other regions to observe the intersection of intervention effectiveness, 
centrality, and socio-economic vulnerability. Similarly, the epidemiological parameters 
in this analysis are chosen to mimic COVID-19, but a novel variant or disease’s repro-
duction rate and infectious period could be used as substitutes. Adopting interdisci-
plinary methodologies to investigate the effectiveness of interventions, with a focus on 
exploring inequalities, may provide novel insights into the factors driving the unequal 
playing field exposed during the COVID-19 pandemic.

Limitations and future directions

Based on the Infection Delay Model algorithm, the delays calculated for a given region 
are dependent on the reductions of mobility flows that arrive to it, rather than its own 
mobility reduction. This operates well under a regime where first cases arrive from indi-
viduals travelling from other locations. Advancements of the Infection Delay Model 
which capture how a first disease introduction to a region can originate from one of its 
residents travelling elsewhere would capture an important dimension of disease trans-
mission. This may lead socio-economic and isolation inequalities to play a stronger role 
in shaping infection delay curves. Further, rather than calculating the time to a region’s 
first case, a case threshold such as 5% infection-rate of the population could be imple-
mented, in which case a region’s own social isolation capabilities would more directly 
impact its infection delay value. These adaptations of the Infection Delay Model can 
expand its scope in capturing the concept of intervention effectiveness, as its current 
focus on the delay to a region’s first case is only one important element.

When considering cell  phone data sources, originally collected for commercial pur-
poses, coverage bias should be noted. As a cell phone analytics company, the sample of 
users in the Inloco/Incognia data set is determined by their market share, rather than 
an emphasis on representative samples (Tizzoni et  al. 2014). The near-global ubiq-
uity of cell  phones does not preclude biases, as possession and use rates vary across 
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demographic and income groups (Kraemer et al. 2020). The elderly are often underrep-
resented in such samples, while educated urban males are overrepresented relative to 
lower-income individuals (Kraemer et al. 2020).

In a preliminary analysis, a modified radiation model was used to determine if the 
results using real commuting data could be replicated with a generalized model. When 
observing the outbreak locations which led to above and below average infection delays 
for the rest of the MRSP, the radiation network overstated the influence of income-
related mobility reductions relative to centrality. This may have occurred because the 
radiation model failed to replicate regional hubs with disproportionately large connec-
tivity throughout the commuting network. This caveat should be considered for future 
research using effective distance-based metrics on artificially generated commuting 
data.

The suitability of integrating traditional household travel survey data with the aggre-
gated social isolation cell  phone data deserves exploration by future research. This 
study recommends comparing granular cell phone mobility location pairs, and observ-
ing how daily travel patterns and their changes after lockdown resemble those found 
in this paper’s analysis. If providing similar results, the greater anonymity of the aggre-
gated social isolation data may render it a more readily accessible and minimally invasive 
method for granular mobility-related studies.
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